
Universidade de Aveiro Departamento de Engenharia Mecânica
2018

DOCUMENTO
PROVISÓRIO

Tomás Sampaio de
Freitas Freixo Osório

Deteção de Objectos para Carros e Pedestres
Através de Deep Learning

Object Detection for Cars and Pedestrians Using
Deep Learning

Universidade de Aveiro Departamento de Engenharia Mecânica
2018

DOCUMENTO
PROVISÓRIO

Tomás Sampaio de
Freitas Freixo Osório

Deteção de Objectos para Carros e Pedestres
Através de Deep Learning

Object Detection for Cars and Pedestrians Using
Deep Learning

Dissertação apresentada à Universidade de Aveiro para cumprimento dos req-
uisitos necessários à obtenção do grau de Mestrado em Engenharia Mecânica,
realizada sob orientação científica de Miguel Armando Riem de Oliveira, Pro-
fessor Auxiliar do Departamento de Engenharia Mecânica da Universidade
de Aveiro e de Vítor Manuel Ferreira dos Santos, Professor Associado do
Departamento de Engenharia Mecânica da Universidade de Aveiro.

O júri / The jury Prof. Doutora Ana Maria Perfeito Tomé
Professora Associada da Universidade de Aveiro

Presidente / President Prof. Doutora Margarida Isabel Cabrita Marques Coelho
Professora Auxiliar da Universidade de Aveiro

Vogais / Committee Prof. Doutor Miguel Armando Riem de Oliveira
Professor Auxiliar da Universidade de Aveiro (orientador)

Prof. Doutor Vítor Manuel Ferreira dos Santos
Professor Associado da Universidade de Aveiro (co-orientador)

Agradecimentos /
Acknowledgements

Gostaria de agradecer todo o apoio dado pela minha família e colegas.
Agradeço ao Professor Vitor Santos, e particularmente ao Professor Miguel
Riem Oliveira por todo o apoio e tempo disponibilizado e por me terem
dado a oportunidade de realizar a Dissertação de Mestrado na área de ma-
chine learning. Também gostaria de agradecer ao Eurico Pedrosa por todo
o tempo disponibilizado a configurar o servidor do IRIS Lab, e claro ao IRIS
Lab por ter nos emprestado o seu servidor.

Palavras-chave Inteligência Artificial; Machine Learning; Deep Learning; Convolutional Neu-
ral Networks, CNN, Detecção de Objectos, Carros Autonomos

Resumo Os carros autónomos são o futuro do sector de transportes, mas a deteção
de objetos nas estradas é ainda um enorme desafio e encontra-se em perma-
nente desenvolvimento. O nosso objetivo foi criar e desenvolver um detetor
de objetos para carros autonómos que consiga localizar carros e pedestres.
Este detetor deve conseguir adaptar-se rapidamente às mudanças de cenário,
pelo que tem de processar um elevado número de imagens por segundo e
identificar os objetos com uma elevada precisão e sensibilidade. Para tal,
recorremos ao deep learning, uma técnica de machine learning que nos últi-
mos anos tem obtido grande sucesso em diversas áreas, de entre as quais a
visão por computador. Com o detetor desenvolvido conseguimos atingir 46
imagens processadas por segundo, uma precisão média de 43,2% e 43,9%
de sensibilidade media, pelo que consideramos que o modelo desenvolvido
apresenta potencial e é competitivo. Os resultados obtidos indicam que o
detetor de objetos desenvolvido poderá vir a ser implementado no ATLAS-
CAR 2, o carro autônomo desenvolvido pelo Departamento de Engenharia
Mecânica da Universidade de Aveiro.

Keywords Artificial Intelligence; Machine Learning; Deep Learning; Convolutional Neu-
ral Networks, CNN, Object Detection, Self-Driving Cars

Abstract Self-driving cars will be the transportation sector future, but nowadays there
still exists multiple challenges to solve, such as detecting objects in roads,
and further research on multiple fields is needed. The aim of our work was
to create an object detector for self-driving cars that detects cars and pedes-
trians. This object detector must be able to perform at high frame rates and
achieve high precisions and recalls, to answer to the fast scenario changes.
We used a machine learning technique called deep learning, which in the
last years was able to achieve state-of-the-art in multiples fields, including
computer vision. Our best result was able to perform at 46 frames per sec-
ond with a mean average precision of 43.2% and a mean average recall of
43.9%, a competitive performance. Our results indicate that our object de-
tector could be implemented in ATLASCAR 2, a self-driving car developed
by the Department of Mechanical Engineer of the University of Aveiro.

Contents

Acronyms iii

1 Introduction 1
1.1 Vehicle Automation . 1
1.2 Artificial Intelligence . 2

1.2.1 Machine learning . 2
1.2.2 Deep Learning . 2

1.3 ATLAS Project . 4

2 Background 5
2.1 Artificial Neural Networks . 5

2.1.1 Feed-Forward Neural Networks . 5
2.1.2 Activations . 6
2.1.3 Loss Function . 9
2.1.4 Optimization . 11
2.1.5 Convolution Neural Networks . 16
2.1.6 Transfer Learning . 20
2.1.7 Regularize Layers . 21
2.1.8 Early Stopping . 21

2.2 General Concepts . 22
2.2.1 Overfitting . 23
2.2.2 Intersection over Union . 23
2.2.3 Non-Maximum Suppressor . 24
2.2.4 k -means Clustering . 24

3 State-of-the-Art in Object Detection 27
3.1 Classic Object Detectors . 27

3.1.1 Rapid Object Detection by Viola and Jones 28
3.2 Two-Stage Detectors . 28

3.2.1 Regions with Convolutional Neural Networks features 29
3.2.2 Faster R-CNN . 30

3.3 One-Stage Detectors . 30
3.3.1 You Only Look Once . 31
3.3.2 YOLO 9000 . 33
3.3.3 SSD: Single Shot MultiBox Detector 34
3.3.4 Focal Loss for Dense Object Detection 35
3.3.5 SqueezeDet . 36

i

3.4 Summary . 36

4 Model Characterization 37
4.1 Architecture . 37

4.1.1 SqueezeNet . 38
4.1.2 Vanilla SqueezeDet Architecture 40

4.2 Objective Function . 41
4.2.1 Vanilla Cost Function . 41
4.2.2 Inference . 46

5 Data Handling 47
5.1 KITTI Dataset . 47

5.1.1 Evaluation Methodology . 48
5.1.2 Dataset Proprieties . 49

5.2 Data Preparation . 52
5.2.1 Data Augmentation . 53

6 Model Fitting 57
6.1 Framework . 57

6.1.1 Machine . 57
6.1.2 Programming Language . 57
6.1.3 Library . 58
6.1.4 Programming the loss function . 59
6.1.5 Training Hyper-Parameters . 59

6.2 Experiments . 60
6.2.1 Vanilla Version . 60
6.2.2 No Augmentation Data . 60
6.2.3 Batch Normalization . 60
6.2.4 Focal Loss . 60
6.2.5 Matching Strategy . 60
6.2.6 No transfer Learning . 60
6.2.7 Frozen layers . 61
6.2.8 Data Standardization . 61
6.2.9 k -means Cluster getting the anchors 62
6.2.10 λ in function of IoU . 63
6.2.11 Lower Input . 63

6.3 Other Trained Models . 63
6.3.1 SSD: MobileNet v1 . 63
6.3.2 SSD: Inception v2 . 64
6.3.3 Faster R-CNN: Inception v2 . 64
6.3.4 Faster R-CNN: ResNet . 64
6.3.5 Faster R-CNN: Inception ResNet v2 64

7 Results and Discussion 65
7.1 Performance Testing . 65

7.1.1 Detecting Cars . 65
7.1.2 Detecting Pedestrians . 68
7.1.3 Detecting Objects . 69

ii

7.1.4 System Performance . 71
7.1.5 Overall Performance . 72

7.2 Predictions Visualization . 75

8 Conclusions 79
8.1 Theory . 79
8.2 Practice . 79
8.3 Results . 80
8.4 Future Work . 80

A Appendix 91

iii

iv

List of Tables

4.1 SqueezeNet Architecture. 38
4.2 SqueezeDet Architecture. 40

6.1 Width and height defined in pixel for anchors sizes for object detection
using KITTI dataset. 59

6.2 Width and height defined in pixel for anchors sizes for object detection
using KITTI dataset and k -means Cluster. 62

7.1 Models version reference. 66
7.2 Results obtained from detecting car in the optimal point, using KITTIs

evaluation method. 66
7.3 Results obtained from detecting car in the optimal point, using PASCALs

evaluation method. 67
7.4 Results obtained from detecting pedestrians in the optimal point. 70
7.5 Results obtained from detecting car and pedestrians in the optimal point,

using KITTIs evaluation method. 70
7.6 Results obtained from detecting car and pedestrians in the optimal point,

using PASCALs evaluation method. 70
7.7 Frame rate and memory needed for each tested system. 73
7.8 Result from various systems tested on KITTI dataset. 74

A.1 Models version reference. 92
A.2 Results obtained from detecting car in the optimal point, using KITTIs

evaluation method. 92
A.3 Results obtained from detecting car in the optimal point, using PASCALs

evaluation method. 93
A.4 Results obtained from detecting pedestrians in the optimal point. 93
A.5 Results obtained from detecting car and pedestrians in the optimal point,

using KITTIs evaluation method. 94
A.6 Results obtained from detecting car and pedestrians in the optimal point,

using PASCALs evaluation method. 94

v

vi

List of Figures

1.1 Object detector predicting the position of cars in a real-world environ-
ment, in red is represented the objects ground truth and in orange the
predictions. 3

2.1 Feed-Forward Neural Network with two-layers, where each circle represents
a unit (from [4]). 7

2.2 Logistic sigmoid function curve. 7
2.3 Hyperbolic tangent function curve. 8
2.4 Rectified Linear Units (ReLUs) graphical representation. 8
2.5 Surface representing an error function E(w) over a weight space, where

point wA is a local minimum and wB is the global minimum. wC represents
the local gradient of the error given by ∆E (from [4]). 11

2.6 Backpropagation for a hidden unit j, where the blue arrow indicates the
forward propagation direction and the red arrow denotes the backward
propagation error (from [4]). 15

2.7 Convolutional layer arrange neurons in three dimensions width (w), height
(h) and depth (d) (from [7]). 16

2.8 Fully Convolutional Neural Network for handwritten digit recognition.
(from [60]). 17

2.9 Simple back-and-white example image (from [7]). 17
2.10 Applying filters that detect vertical and horizontal lines on a simple black-

and-white example image (from [7]). 18
2.11 Representation of a RGB image as a input volume and applying a volu-

metric convolutional filter, resulting in a output volume (from [7]). 18
2.12 Max-pooling applied to a feature map (from [7]). 20
2.13 Dropout exemplification on a two hidden layer Neural Network Model: (a)

standard version during the training phase; (b) dropout applied during the
training phase, some random units have been dropped (from [104]). . . . 22

2.14 Demonstration of the behaviour of training set error (left) and validation
set error (right) during the training phase of a network. According to the
early stopping method, the training should be stopped around the vertical
dashed lines, which corresponds to the point where the error from the
validation set reached its minimum (from [7]). 22

2.15 In blue we have a model that is overfitting the sample data (blue dots),
that was generated by adding noise to the true function (orange) (inspired
by1). 23

2.16 Visual exemplification of Intersection over Union metric.(inspired by2) . . 24

vii

2.17 Comparison between applying or not Non-Maximum Suppression (NMS)
in an output image from an Object Detector (a) Input image without
applying NMS; (b) Input image applying NMS. This image is from KITTI
Dataset. 25

2.18 k -means Clustering with k equal to 3, each cluster is represented by a
different colour. 25

3.1 Regions with Convolutional Neural Networks features (R-CNN) pipeline:
(1) the system takes an input image, (2) extracts around 2000 region
proposals, (3) computes features for each proposal using a Convolutional
Neural Network (CNN), and (4) classifies each region using a class-specific
linear Support Vector Machine (SVM) (from [36]). 29

3.2 You Only Look Once (YOLO) first divides the image into a S × S grid,
which each grid cell will predict B bounding boxes, with an associated
confidence C per bounding box, and the class probabilities c for each cell
(from [87]). 31

3.3 Different variations of γ in the Focal loss (from [64]). 36

4.1 Fire Module, which is the building block of SqueezeNet (from [52]). . . . 39
4.2 In (a) is represented the grid that is applied on each image to create

a spatial distribution, (b) shows how it is allocated a cell to a specific
Ground Truth (GT). The red dot is the centre of the bounding box, the
green box is the limited area of the cell and the red box is GT. 42

4.3 Offset between the cell and bounding box centre. 42
4.4 Anchor allocation to an object. Solid lines represent anchors, and the

dashed line the object. The green anchor has the highest overlap with the
object. 43

5.1 Class balance, between cars (21707) and pedestrians (4276), of KITTI
Dataset. 51

5.2 Normalized width and height scatter plot of the objects from KITTIs’
dataset. 52

5.3 Normalized x and x coordinates scatter plot of the objects centre from
KITTIs’ dataset. 52

5.4 Number of objects per occlusion level (a) in cars and (b) in pedestrians,
on KITTIs dataset. 53

5.5 Augmentation data techniques: (a) original image; (b) flipped image within
vertical axis; (c) random rotation of the image; (d) random crop with a
random scale of the image. 54

5.6 Augmentation data techniques: (a) random change in saturation, bright-
ness and hue of the image; (b) applying all the previously described meth-
ods at the same time. 55

6.1 A set of four subfigures. 61
6.2 k -means cluster with k equal to 9, using the normalized aspect ratios from

KITTIs training data; the stars represent the centre of each cluster. . . . 62
6.3 Graphic of λ in function to Intersection over Union (IoU). 63

viii

7.1 Average Precision-Recall curve for detecting Cars using KITTIs evaluation
method, where * is referent to the optimal point. 67

7.2 Mean Average Precision-Recall curve for detecting cars using KITTIs eval-
uation method, where * is referent to the optimal point. 68

7.3 Average Precision-Recall curve for detecting pedestrians, where * is refer-
ent to the optimal point. 69

7.4 Mean Average Precision-Recall curve for detecting cars and pedestrians
using KITTIs evaluation method, where * is referent to the optimal point. 71

7.5 Mean Average Precision-Recall curve for detecting cars and pedestrians
using PASCAL evaluation method, where * is referent to the optimal point. 72

7.6 Prediction of an KITTI test image, which wrongfully classified an cyclist
as pedestrian. 75

7.7 Prediction of an KITTI test image,which wrongfully classified an cyclist
as pedestrian and detecting a hardly visible car. 76

7.8 Prediction of an KITTI test image, which did not a cars GT. 76
7.9 Prediction of an KITTI test image, wrong label on a Van. 77
7.10 Prediction of an KITTI test image, overlapping of cars in a parking lot. . 77
7.11 Prediction of an KITTI test image, miss classifying vans as cars. 77

ix

x

ii

Acronyms

AI Artificial Intelligence

ML Machine Learning

IoU Intersection over Union

NMS Non-Maximum Suppression

RoI Region of Interest

YOLO You Only Look Once

SSD Single Shot Detection

AP Average Precision

mAP mean Average Precision

mAR mean Average Recall

FPS Frame per Second

GT Ground Truth

L1 Mean Absolute Error

softmax normalized exponential function

DPM Deformable Part Model

RPN Region Proposal Network

TDM Top-Down Modulation

FCN Fully Convolution Network

SVM Support Vector Machine

AdaBoost Adaptive Boost

SLAM Simultaneous Localization and Mapping

TP True Positive

TN True Negative

iii

FP False Positive

FN False Negative

GPU Graphics Processing Unit

CPU Central Processing Unit

GB Gigabyte

SGD Stochastic Gradient Descent

GT Ground Truth

RAM Random-Access Memory

R-CNN Regions with Convolutional Neural Networks features

CNN Convolutional Neural Network

SVM Support Vector Machine

RPN Region Proposal Network

SGD Stochastic Gradient Descent

Mb Megabyte

ANN Artificial Neural Network

DNN Deep Neural Network

FCNN Fully Connected Neural Network

ReLU Rectified Linear Unit

MSE Mean Square Error

MAE Mean Absolute Error

MSLE Mean Squared Logarithmic Error

iv

Chapter 1

Introduction

Technology has always developed alongside with society [6], shaping it in different ways.
Currently, we are entering in the Artificial Intelligence (AI) revolution, which could
impact society and firms in different ways [69], as for example the transport sector.

According to the World Health Organization (WHO) road traffic accidents are a
leading cause of preventable death. Over 1.2 million people die each year on the world’s
roads, being in the top ten causes of death among people aged between 15-29 years [112].
Human error has been a big factor in the causes of road accidents and could be minimized
using vehicle control systems [96].

The aim of this thesis is to explore an AI application to prevent human error-related
road accidents. We will use AI to perform object detection (namely cars and pedestrians)
on images of real-world scenarios.

1.1 Vehicle Automation

According to Society of Automotive Engineers (SAE) there are six levels of driving au-
tomation on a car [53]. If the human driver performs a part of the car driving task the
level of drive automation is 2 or lower, on the other hand, if the autonomous driving
systems perform the total control of the vehicle the level of car automation is 3 or above.
These levels differ if the next tasks are performed by a Human Driver and/or a System:

• Execution of Steering an Acceleration/Deceleration (level 2 and above);

• Monitoring of Driving Environment (level 3 and above);

• Fallback Performance of Dynamic Driving Task (level 5 and above);

• System Capability on driving in multiple environments (level 5).

TheDynamic driving task consists in the operational aspects of the driving task (steer-
ing, braking, accelerating, monitoring the vehicle and the roadway) and in the tactical
aspects of driving task (responding to events, determining when to change lanes, turn,
use signals, etc.), but not in the strategic task (determining destinations and waypoints).
Driving mode is a type of driving scenario in which are performed dynamic driving
task (e.g., expressway merging, high-speed cruising, low-speed traffic jam, closed-campus
operations, etc.).

1

2 1.Introduction

The automation of cars will change the way we live [124], reducing the cost of travel,
increasing travel safety, allowing to optimize the route, etc. Increasing the quality of
living in the cities. To achieve the highest levels of automation is necessary the usage
of learning techniques [5], which allows completing multiple tasks without the need to
hard-code all the rules. This suggest that AI systems need the ability to gain their own
knowledge, by extracting patterns from raw data [38].

1.2 Artificial Intelligence

The field of AI attempts to understand intelligent entities and create them. Intelligence
entities have a huge impact on our everyday lives and will affect the course of civilization
[94].

In its early days, the AI was used to rapidly solve problems that are intellectually
difficult for human beings, which could be described by mathematical rules and are
relatively straightforward for a computer. However, the true challenge for AI are the
tasks that are easy for the humans to perform but hard to describe, such as language,
vision, recognizing spoken words, etc.

Several AI projects have tried to solve problems through hard-coded knowledge, which
is known as a knowledge base systems, but none of these projects led to a major
success. The difficulties faced by systems just relying on hard-coded knowledge led the
scientific community to realize that there is the need of implementing systems that are
able of acquire its own knowledge through patterns from raw data. This capability is
known as machine learning.

1.2.1 Machine learning

Machine Learning (ML) gives computers the ability to learn without being explicitly
programmed [98]. This transformative technology allows computers to make decisions
according to the provided data, performing very well for problems that either are too
complex or does not have a known algorithm to solve it [34].

The first ML techniques depended heavily on the representation of the provided
data, these pieces of information are known as a feature. ML techniques, such as logistic
regression, could correlate different features, however, cannot alter them. Many tasks
were solved by designing the right set of features for the task but is difficult to know
which should be extracted.

With the development of ML techniques, they were not only able to correlate different
features but also extracting their own features. This is known as representation learning,
resulting in higher performances comparing to knowledge base systems. However these
techniques generally did not perform well in real-world applications, due to the high level
of variety that occurs in these scenarios. Deep Learning solved this problem, allowing
the computer to build complex concepts out of simpler concepts, being more robust to
noise [38].

1.2.2 Deep Learning

The easiest way to explain Deep Learning is with a feed-forward deep network or
Multilayer Perceptron (MLP) model. First, the input layer transmits the input data to

Tomás Sampaio de Freitas Freixo Osório Dissertação de Mestrado

1.Introduction 3

the hidden layer. The unit in the hidden layer accumulates and process the weighted
inputs before sending their outputs to the output units. This structure is trained to learn
by repeated exposure to examples until produces the correct output [97]. In our next
chapter, these concepts will be discussed.

Despite the fact that Deep Learning has been characterized as a re-branding of
Artificial Neural Network (ANN) [37], various deep learning architectures have been
applied to fields like computer vision, speech recognition, natural language processing, as
in many other fields and they have been producing the state-of-the-art results in different
tasks [79].

Using deep learning techniques, in 2012 ImageNet Large Scale Visual Recognition
Challenge (ILSVRC) [56], Hinton and his student Krizhevsky were able to surpass all
other competitors in image classification and achieved top-5 error 15% vs 26.2% of the
conventional methods [58]. From that time onwards deep learning is being applied to
many areas of computer vision, achieving great results. One of the field that had great
success using deep learning techniques was object detection [127].

Object Detection

Object detection consists of localizing and classifying an object on an image. Typically
the localization is represented by a bounding box [93], [65], as shown in Figure 1.1.

Initially the object detection was based on hand-crafted features, but because of
the complex background, noise disturbance, occlusion, illumination changes and other
circumstances, it was very hard to create a robust system with a good generalization
[127].

Deep learning was successfully used in object detection by Ross Girshick in 2013,
which proposed the R-CNN [36]. This method was a milestone and further methods
came after this one as well other approaches that will be detailed in State-of-the-Art in
Object Detection.

Figure 1.1: Object detector predicting the position of cars in a real-world environment,
in red is represented the objects ground truth and in orange the predictions.

Tomás Sampaio de Freitas Freixo Osório Dissertação de Mestrado

4 1.Introduction

1.3 ATLAS Project

ATLAS project1 started in 2002/2003 in the Laboratory of Automation and Robotics on
the Department of Mechanical Engineering of the University of Aveiro. ATLAS focused
its resources into autonomous driving subjects, which first started developing small-
scale prototypes to enrol in the Portuguese Robotics Open (PRO). After successfully
winning several awards,in 2010 the project team begun developing a real-scale vehicle
ATLASCAR, containing several cutting-edge sensors. With this car they accomplished
several breakthroughs at the time, such as localizing zebra crossings, pedestrians, or for
example following a person within a safe distance [78].

Currently, this car already has installed several sensors such as cameras, lasers, GPS,
among others [16].

The aim of the present work is to create an object detector that could be later on
implement in ATLASCAR 2.

1http://atlas.web.ua.pt/

Tomás Sampaio de Freitas Freixo Osório Dissertação de Mestrado

Chapter 2

Background

This chapter explains basic concepts about ANNs, and at the end of this section, it
will be complemented it with some concepts that are more focused on object detection
problems.

2.1 Artificial Neural Networks

ANNs have been around since 1943, were neurophysiologist Warren McCulloch and math-
ematician Walter Pitts introduced a simplified computational model of how biological
neurons might work in animals [70]. However, this field is no longer inspired by biologi-
cal neurons due to the difficulty to understand how the biological brain works.

ANNs had its ups and downs [71] due to exaggerated claims regarding their biological
plausibility, but lately have been under a lot of attention again due to their powerful
abilities in image processing, speech recognition, natural language processing, etc. The
increase of computational capability and the large amount of data available nowadays
allowed the ANNs to out-perform other frameworks in these fields [10].

In the next subsection, it will be explained in detail how feed-forward Neural Networks
work and also some variations that exist. These concepts were based on Bishops [4] and
Buduma [7] books.

2.1.1 Feed-Forward Neural Networks

ANN are very similar to linear models used for regression and classification problems,
using an identical basic function. ANNs associate a linear combination of inputs allowing
that each basis function be a non-linear function since the coefficients are adaptive pa-
rameters. Equation 2.1 constructs M linear combinations of the input variables x1, ..., xD
[4]:

aj =

D∑
i=1

w
(1)
ji xi + w

(1)
j0 , (2.1)

where the superscript (1) refers to the corresponding layer, being in this case, the first
layer of the network, the j = 1, ...,M indicates the position in that layer. w

(1)
ji xi are

5

6 2.Background

the weights, w(1)
j0 the biases and aj are the activations. Then, these activations are

transformed using a differentiable non-linear activation function h(·):

zj = h(aj), (2.2)

these are called hidden units. A sigmoidal function is generally used as the non-linear
function h(·), such as a logistic sigmoid or hyperbolic tangent function. These values
are again linearly combined in order to give output activation, resulting in the following
equation:

ak =
M∑
j=1

w
(2)
kj zj + w

(2)
k0 , (2.3)

where k = 1, ...,K and K is the total number of outputs. These computations cor-
responds to the second layer of the network, where the output unit activations use an
appropriate activation function to give a set of network outputs yk, which varies according
to the provided data and objective of the network.

For multiple classification problems, each output unit activation is transformed using
a logistic sigmoid function according to the following equation:

yk = σ(ak), (2.4)

where,

σ(a) =
1

1 + exp(−a)
. (2.5)

The layers that just described are called fully-connected layers. These computations will
result in a two-layer feed-forward ANN that can be represented as shown by Figure 2.1.
Notice that the number of the network’s inputs is the same amount as provided during
training, however, the number of outputs varies according to the chosen task.

2.1.2 Activations

Activations functions used in ANN are univariate and applied to each element of the input
feature providing the non-linearity needed to learn complex distributions [115]. In the
next subsections will be explained in further detail the most commonly used activation
functions in the current state-of-the-art.

Logistic Sigmoid Function

The logistic sigmoid function is one of the most commonly used activation functions in
feed-forward neural networks due to their non-linearity and the computational simplicity.
Its smoothness is also helpful to soft limiting non-linearities, which are common in ANN
[40]. Logistic sigmoid functions return values vary between 0 and 1, which is commonly
needed for the network’s output, this function is computed as follows:

σ(a) =
1

1 + exp(−a)
, (2.6)

Figure 2.2 shows logistic sigmoid function graphical representation.

Tomás Sampaio de Freitas Freixo Osório Dissertação de Mestrado

2.Background 7

Figure 2.1: Feed-Forward Neural Network with two-layers, where each circle represents
a unit (from [4]).

-6 -4 -2 0 2 4 6
0.00

0.25

0.50

0.75

1.00

Figure 2.2: Logistic sigmoid function curve.

Hyperbolic Tangent Function

Hyperbolic tangent function, abbreviated as Tanh, is a continuous and differentiable
sigmoidal function. This function outputs values between -1 and 1, making each layers
output more normalized, often helping to obtain faster converges [34]. Figure 2.3 shows
the hyperbolic tangent function graphical representation.

Rectified Linear Units Function

ReLUs [74] had been essential to the recent success of Deep Neural Networks (DNNs),
allowing the decrease of training time due to their computational simplicity, generally
obtaining similar or higher performances comparing to sigmoidal functions [126], [17].

Tomás Sampaio de Freitas Freixo Osório Dissertação de Mestrado

8 2.Background

-3 -2 -1 0 1 2 3
-1.0

-0.5

0.0

0.5

1.0

Figure 2.3: Hyperbolic tangent function curve.

-1.0 -0.5 0.0 0.5 1.0
-1.0

-0.5

0.0

0.5

1.0

ReLU
LeakyReLU
PReLU

Figure 2.4: ReLUs graphical representation.

The ReLU is computed as follows:

f(a) ≡

{
a, if a > 0,

0 if a 6 0,
(2.7)

After ReLU activation function emerged, various version had appeared trying to
improve further its performance. One of the most used is Leaky ReLU [68], which is
formulated as follows:

f(a) ≡

{
a, if a > 0,

az if a 6 0,
(2.8)

where z is a parameter to adjust the slope, which generally is set to 0.01. This tweak
allows having gradient through all its values, unlike the original version, however, does
not improve the results substantially [68].

In 2015 another variant emerged, the Parametric Rectified Linear Unit [44], which
its formulation is similar to Leaky ReLU but with a higher slope (z = 0.25). This
tweak allows improving the network’s performance at a negligible extra computational
cost with little overfitting risk. Figure 2.4 shows the graphical representation of the
activation functions described before.

Tomás Sampaio de Freitas Freixo Osório Dissertação de Mestrado

2.Background 9

Normalized Exponential Function

The Normalized Exponential Function, most known as Softmax function, allows to reduce
extreme-values (outliers) in the data without removing them from the dataset [84]. This
function is widely used in classification frameworks as the output activation function
because it associates a "probability" for each trained class [4]. Its formulation is expressed
as follows:

f(a) =
exp(ak)∑
j
exp(aj)

, (2.9)

this formulation satisfies 0 6 f 6 1 and
∑
k

f = 1, where k represents the k -th unit and j

the index for that vector components.

2.1.3 Loss Function

The Loss function quantifies how close the prediction is from the GT, so it is always
dependent on the focused task [81]. This is very important due to the impacts that may
occur in the choice of a loss function. For example, in a system in a medical field, a false
negative might lead to a patient not receiving treatment for a serious disease, however, a
false positive might lead to additional tests or even unnecessary treatments [91]. So, we
must choose a trade-off that makes sense.

The loss function in ANNs will be used to help find the parameters (weights and
biases) that will minimize the loss incurred from the errors. Generally, this can not be
solved in an analytical form, so, commonly an iterative optimization algorithm is used
to solve it.

The following subsections we will denote that a given training set comprising a set
of input vector {xn}, where n = 1, ..., N and the corresponding set of target vectors will
be {tn}.

Loss function for Regression

Mean Square Error

The Mean Square Error (MSE) is one of the most used loss functions for regression due
to its simplicity, however is sensitive to outliers. The MSE is calculated by squaring the
error in a prediction and averaging over the entire dataset, as denoted in the following
equation:

E(w) =
1

N

N∑
n=1

(y(xn, w)− tn)2. (2.10)

Tomás Sampaio de Freitas Freixo Osório Dissertação de Mestrado

10 2.Background

Mean Absolute Error

The Mean Absolute Error (MAE) consists of simply averaging the absolute error over
the number of data points:

E(w) =
1

2N

N∑
n=1

∣∣y(xn, w)− tn
∣∣ . (2.11)

Mean Squared Logarithmic Error

For regression is also used Mean Squared Logarithmic Error (MSLE), which is quite sim-
ilar to MSE but we calculate the logarithm of the target and prediction. The formulation
of this loss function is denoted as follows:

E(w) =
1

N

N∑
n=1

(log(y(xn, w))− log(tn))2. (2.12)

Loss function for Regression: Discussion

The functions described above are frequently used, but each has its advantages and
disadvantages. The MSE is widely used, just as MAE, however, when the outputs varies
a lot generally is used MSLE. For example, if we have two outputs, one that varies
between [0, 10] and the other between [0, 100], MSE and MAE would penalize more the
second output than the first, however, MSLE would take into account its values sizes.

Loss function for Classification

The ANNs commonly use for classification problems loss functions that associate a "prob-
ability" to its outputs, allowing to know with some degree of certainty which class is most
likely to be. In the following subsections its explained how these loss functions are for-
mulated.

Hinge Loss

Hinge loss is generally used for binary classification, mostly when the network must be
optimized for a hard classification, for example in detecting frauds, where fraud = 1
and no fraud = 0. This kind of classification is by convention called as a 0-1 classifier.
However, when using Hinge loss the data points must be -1 or 1, where this function is
computed as follows:

E(w) =
1

N

N∑
n=1

max(0, 1− y(xn, w)× tn). (2.13)

Negative Logarithmic Likelihood

Negative Logarithmic Likelihood is frequently in classification problems with multiple
classes. This function is mathematically equivalent to what is called the cross-entropy

Tomás Sampaio de Freitas Freixo Osório Dissertação de Mestrado

2.Background 11

Figure 2.5: Surface representing an error function E(w) over a weight space, where point
wA is a local minimum and wB is the global minimum. wC represents the local gradient
of the error given by ∆E (from [4]).

between two probability distributions. The formulation of Negative Logarithmic Likeli-
hood is denoted as follows:

E(w) = −
N∑
n=1

{tn ln yn + (1− tn) ln(1− yn)}. (2.14)

This loss function leads to a faster training and good generalizations [102].

2.1.4 Optimization

After obtaining the error from the loss function E(w), it is needed to find suitable weight
and biases (w) to minimize it. To better explain this process, Figure 2.5 contains a
geometrical representation of the error function in order to the weights and biases, with
an example of two weights.

To optimize a network, it is made a small step in the weight space from w to w + δ
which will change the error function δE ' δwT∆E(w). Notice that the vector ∆E(w)
points in the direction where the error function will increase the most. Since E(w) is a
continuous function of w, the smallest value will occur when the weights will make that
the gradient of the error function vanishes, so that:

∆E(w) = 0, (2.15)

however, when taken a small step in the opposite direction −∆E(w) the error will reduce.
When the gradient vanishes these points are called stationary points, which may be
minima, maxima or a saddle point.

For a good optimization it is necessary to find a vector w that will get the smallest
value in the error function E(w) corresponding to the global minimum. In ANN it is
normally not possible to verify if a minimization reached the global minimum or if we
will ever find it, so it is necessary to compare several local minima to find a solution. To

Tomás Sampaio de Freitas Freixo Osório Dissertação de Mestrado

12 2.Background

find this minimum it would be nearly impossible doing it using an analytical solution so,
instead, an iterative approach is used. The techniques that use this approach typically
choose some initial value w(0) for the weight vector and move it around the space in a
succession of steps; the next equation denotes this process:

w(τ+1) = w(τ) + ∆w(τ), (2.16)

where τ labels the iteration step. Not all techniques update the weight vector ∆w(τ) in
the same way, however many of them use the gradient information. So, it is required
that after each step the value of ∆E(w) is evaluated at the new weight vector w(τ+1) [4].

Gradient Descent

Gradient descent uses the gradient information to choose the weight update in (2.16)
taking a small step in the direction of the negative gradient; this computed is as follows:

w(τ+1) = w(τ) − η∆E(w(τ)), (2.17)

where the parameter η > 0 is known as the learning rate. This computation happens
after each weight update, so that the gradient be re-evaluated for the new weight vector
w. After each weight update is also necessary to revaluate the error function ∆E for all
the training data. These techniques that use the whole dataset at once are called batch
methods, which every step the weight vector moves towards the biggest decrease in the
error function. The approach previously described is called gradient descent or steepest
descent. This process intuitively may seem optimal, however, turns out to be a poor
algorithm.

There are other batch methods which are more efficient than gradient descent, such
as conjugate gradients and quasi-Newton methods, which are more robust and faster [82],
[29], [75]. These algorithms are built to decrease the loss at each iteration, if they did
not already reach a local or global minimum. However, it is necessary to run multiple
times in different random starting points to find a sufficiently good minimum and then
test its performance on an independent dataset, causing these methods to be highly
time-consuming.

In 1998, LeCun et al. [62] were able to develop an online version of gradient descent
that was useful to train ANNs on large datasets. For that, the error function is based on
a maximum likelihood for a set of independent observations that its terms are summed,
one for each data point. This is be computed as follows:

E(w) =

N∑
n=1

En(w). (2.18)

This method, online gradient descent, most commonly known as Stochastic Gradient
Descent (SGD), updates the weight vector one data point at a time, as denoted in the
following equation:

E(w(τ+1)) = w(τ) − η∆En(w(τ)). (2.19)

These updates are repeated through cycling all data. Each iteration, or cycle, could be
gathered by choosing random points or by sequential points.

Tomás Sampaio de Freitas Freixo Osório Dissertação de Mestrado

2.Background 13

SGD and other online methods deal with data much more efficiently than batch
methods, because the online methods do not deal with all data at once. This way, the
dataset size will not affect the computational effort of the online methods. Another
advantage of using online methods is the possibility of escaping from local minima,
since a stationary point with respect to the error function for the whole data set will
generally not be a stationary point for each data point individually.

Backpropagation

ANN are trained through an iterative process that adjusts the weights in a sequence of
step, which is is defined by two main phases. The first phase evaluates the derivatives
of the error function with respect to the weight. This process is called backpropagation
that uses a local message passing scheme where the information in passed backwards.
Then the weights are adjusted accordingly with the computed derivatives. One of the
simplest techniques initially considered was [18] which involves gradient descent.

Evaluation of error-function derivatives

To better understand how backpropagation works lets consider an arbitrary feed-forward
topology, using an arbitrary differentiable non-linear activation function and a broad
class of error functions. This will result in a single layer of a sigmoidal hidden unit,
which the cost function will be a sum-of-squared error. The error function can is defined
as follows:

E(w) =

N∑
n=1

En(w). (2.20)

Considering a simple linear model that the outputs yk are linear combinations of its input
variables xi, which is denoted as follows:

yk =
∑
i

wkixi. (2.21)

With a particular input pattern n and the output of the linear combination yk, the error
function will be:

En =
1

2

∑
k

(ynk − tnk)2, (2.22)

where ynk = yk(xn, w). The gradient with respect to a weight (wji) of this error function
is given by the following equation:

∂En
∂wji

= (ynj − tnj)xni, (2.23)

this equation can be viewed as a "local" computation, which involves the product of an
"error signal" (ynj−tnj) associated with the output end of the link (wji) and the variable
xni associated with the input end of the link.

Tomás Sampaio de Freitas Freixo Osório Dissertação de Mestrado

14 2.Background

For more complex systems, for example, a multilayer feed-forward network, each unit
from this network computes a weighted sum of its inputs:

aj =
∑
i

wjizi, (2.24)

where zi is the activation of a unit, or input, which sends a connection to j-th unit and
to the weight associated with that connection is wji. Biases can be included in this sum
by introducing an extra input with activation fixed at +1, therefore it does not need to
be dealt with it explicitly. The sum resulted in (2.24) is transformed by a non-linear
activation function h(.) resulting in the activation zj of the unit j. This is computed as
follows:

zj = h(aj). (2.25)

Notice that in (2.24) the sum could be done by one or more variables zi, also in (2.25)
the unit j could be an output.

This process is called forward propagation, it consists of passing the data information
through the network and then calculate the activations of all of the hidden and output
units in the network by successive applying (2.24) and (2.25).

After the forward propagation its applied the backpropagation, however first it is
necessary to evaluate the derivatives of En with respect to a weight wji. The outputs
of the units will depend on the input data n, however, to keep the notation in a cleaner
way it is omitted the subscript n from the network variables. Since En depends on the
weight wji only via the summed input aj to unit j it is applied the chain rule for partial
derivatives, denoted as follows:

∂En
∂wji

=
∂En
∂aj

∂aj
∂wji

. (2.26)

using the following notation:

δj ≡
∂En
∂aj

, (2.27)

where the δ’s are often referred to as errors. Using (2.24) results in:

∂aj
∂wji

= zi. (2.28)

Substituting 2.27 and into 2.26, outcomes the following equation:

∂En
∂wji

= δjzi. (2.29)

This equation indicates that the required derivative is obtained by multiplying the value
of δ for the unit at the output end of the weight by the value of z for the unit at the
input end of the weight (where z = 1 in the case of a bias). Notice that this is similar to
the simple linear model when it was explained the Feed-Forward Networks. To evaluate
the derivatives it is needed to be calculated the value of δj for each hidden and output
unit in the network, then its applied (2.29), which results in:

δk = yk − tk. (2.30)

Tomás Sampaio de Freitas Freixo Osório Dissertação de Mestrado

2.Background 15

Figure 2.6: Backpropagation for a hidden unit j, where the blue arrow indicates the
forward propagation direction and the red arrow denotes the backward propagation error
(from [4]).

Now, it is applied the chain rule for partial derivatives in order to evaluate the δ’s for
hidden units, resulting in:

δj ≡
∂En
∂aj

=
∑
k

∂En
∂ak

∂ak
∂aj

. (2.31)

Notice that the sum runs over all units k to which unit j sends connections, this is better
shown in Figure 2.6.

To formulate the backpropagation the definition of δ given by (2.27) its substituted
into (2.31) and making use of (2.24) and (2.25), results in:

δ = h′(aj)
∑
k

wkjδk, (2.32)

which the value of δ of a particular hidden unit can be obtained by propagating the δ’s
backwards from units higher up in the network. Since it is known the value of δ’s for the
output units, we can evaluate it for all the hidden units by recursively applying (2.32).

Summary of the backpropagation [4]:

1. Apply an input vector xn to the network and forward propagate through the net-
work using (2.24) (2.25) to find the activations of all the hidden and output units.

2. Evaluate the δk for all the output units using (2.30).

3. Backpropagate the δ’s using (2.32) to obtain δj for each hidden unit in the network.

4. Use (2.29) to evaluate the required derivatives.

In batch methods the derivative of the total error E could be obtained through
repeating the step above and then summing all up, as it follows:

∂E

∂wji
=
∑
n

∂En
∂wji

, (2.33)

where is assumed that all units have the same activation function h(.). However, if we
wanted different activations functions for some units, it would simply be needed to keep
track of it of which form of h(.) goes with which unit.

Tomás Sampaio de Freitas Freixo Osório Dissertação de Mestrado

16 2.Background

Figure 2.7: Convolutional layer arrange neurons in three dimensions width (w), height
(h) and depth (d) (from [7]).

2.1.5 Convolution Neural Networks

If we select a random image and try to identify the containing objects, for a human,
that would be easy and extremely natural to do it so. However, for a machine, it is
extremely difficult due to the high variance and variety present in an image. Even by
using traditional machine learning algorithms would struggle with the given challenge.
This happens because the signal-to-noise ratio is too high for any useful learning to occur.

Another attempt made, obtained a trade-off between traditional computer program,
where it was defined all the logic, and then the machine learning would do the compu-
tational generalizations. For that, the features had to be hand picked and could reach
to hundreds or even thousands. This would produce a lower-dimensional representation
of the problem and then the machine learning would use these features to make a deci-
sion. Since this feature extraction improves the signal-to-noise ratio, if the features were
appropriated picked, it would accomplish the task with a higher performance compar-
ing it to other state-of-the-art solutions at the time. This technique is very slow and
time-consuming and did not obtain any extraordinary results, so other solutions were
attempted.

With the increased power of the computers, DNNs started to emerge. This machine
learning method limited the feature selection process since each layer is responsible for
learning and building up features to represent the received input data. However, in 1990
Convolutional Neural Networks (CNNs) appeared, which were inspired by how biological
vision works arranging the input layers in three dimensions width, height and depth
as shown in Figure 2.7. These networks use the "raw" data as its input and rely on
backpropagation to appropriately extract features for the first layers. Figure 2.8 shows
one of the first Fully Convolution Networks (FCNs) successfully used in image processing.
CNNs combine three key features to ensure some degree of shift and distortion invariance,
such as (1) local receptive fields, (2) shared weights (or weight replication), and (3) spatial
or temporal subsampling [60]:

1. Local receptive fields: allows units (or neurons) to extract elementary visual
features such as oriented edges, end-points, corners.

Tomás Sampaio de Freitas Freixo Osório Dissertação de Mestrado

2.Background 17

Figure 2.8: Fully Convolutional Neural Network for handwritten digit recognition. (from
[60]).

2. Shared weights: allows to reduce the number of parameters needed by a large
factor, still being able to extract a lot of useful information.

3. Spatial/Temporal subsampling: performs a local averaging and a subsampling,
reducing the resolution of the feature map, and the sensitivity of the output to shifts
and distortions.

Filters and Features Maps

The filters and feature maps are the key concept of convolution layer, in which a filter
consists essentially of a feature detector. To better understand how they work, let’s
consider the Figure 2.9. To detect the vertical and horizontal lines in 2.9 it must be used
a feature extractor like the one shown in Figure 2.10. To detect the vertical lines, the
feature presented in the top is used, which is slid through the image, and when it matches
a vertical line was detected. The results are shown in the matrix presented in the top
right corner; in black are marked the detected vertical lines, which is the resulting feature
map. For the horizontal lines, the results are accordingly presented in the bottom right
side of the Figure 2.10.

The operation described above is a convolution, which consists essentially of a filter
that is multiplied over the entire area of the image in question. In feed-forward neural
networks, "a unit in a feature map (layer) is activated if the filter contributing to its
activity detects an appropriate feature at the corresponding position in the previous layer"
[7].

Figure 2.9: Simple back-and-white example image (from [7]).

Tomás Sampaio de Freitas Freixo Osório Dissertação de Mestrado

18 2.Background

Figure 2.10: Applying filters that detect vertical and horizontal lines on a simple black-
and-white example image (from [7]).

Figure 2.11: Representation of a RGB image as a input volume and applying a volumetric
convolutional filter, resulting in a output volume (from [7]).

To express the feature map let’s denote the kth feature map in a layer m as mk and
the corresponding filters are defined by the values of its weights wkji. If we assume that
the units in the feature map have bias wkj0 and that are kept identical for all units in a
feature map, we can the express the feature map with the following equation:

mk
ji = f(wkjixi + wkj0), (2.34)

despite the equation being simple and concise, it does not describe how the filter work in
CNNs. Filters operate on the entire volume of the feature map from a particular layer.
If we have an image represented by RGB (Red-Green-Blue) values, that means that we
have an input volume that contains three slices. Since feature maps are able to operate
over volumes, not just areas, as shown in Figure 2.11, each cell in the input volume is a
unit.
Summing up how a convolution layer works:

A convolutional layer consists of a set of filters that converts one volume of values
into another volume of values. The depth of each filter corresponds to the depth of the
input volume, allowing filters to combine information from all features that have been
learned. The depth of the output layer corresponds to the number of filters in that layer
because each filter produces its own slice.

Tomás Sampaio de Freitas Freixo Osório Dissertação de Mestrado

2.Background 19

Full description of the Convolutional Layer

In a convolutional layer, the first step consists of taking an input volume. So first let’s
characterize the input volume:

• Its width win;

• Its height hin;

• Its depth din;

• Its zero padding p.

This input volume is then processed by k filters, which represents the weights and con-
nections in the CNN. These filters have a number of parameters that define them, which
are described as follows:

• Spatial extent is a scalar e, which is the dimensions of the filter: height and width.

• Strides s, represent how many shifts it moves every time the filter is applied.

• Besides weights w, Convolutions also have bias b, that are learned in the same way,
which is added to each component of the convolution.

The output volume that results in applying the previous filters can be characterized as
follows:

• Its width wout = [win−e+2p
s] + 1.

• Its height hout = [hin−e+2p
s] + 1.

• Its depth dout = k.

• Its activation function f is applied to every unit in the output value to determinate
its final output value.

The depth slice of the output volume is denoted as mth, where 1 ≤ m ≤ k, corresponds
to the function f applied to the sum of the mth filter convoluted over the input volume
and the bias bm. This means that per filter we have dine2 parameters, which mean that
the layer has kdine2 parameters and k biases.

In real applications, the filter sizes are usually kept small (3 × 3 or 5 × 5), allowing
high representations while using a reduced number of parameters, however, is common
to use at the first convolutional layer bigger filters (7× 7). The filters, generally, also use
a stride of 1 to capture all useful information from the feature maps and zero padding
to keep output volume, width and height, the same as the input volume.

Tomás Sampaio de Freitas Freixo Osório Dissertação de Mestrado

20 2.Background

Figure 2.12: Max-pooling applied to a feature map (from [7]).

Max-Pooling Layer

Map-pooling layers are used to reduce the dimensionality of the feature maps and sharpen
the local features, these layers generally appear after convolution layers. The idea behind
this kind of layer is to break up each feature map into equally size tiles and then create a
condensed feature map. To better understand this process we suggest to look into Figure
2.12.

Max-pooling layers have to main parameters, the spatial extent e and the stride s.
Generally, when using pooling layers only two major variations are used. The first is
the non-overlapping pooling layer with e = 2 and s = 2, the second is the overlapping
pooling layer with e = 3 nad s = 2. The output dimension of each feature map after
applying a pooling layer takes the following form:

• Its width wout = [win−e
s] + 1

• Its height hout = [hin−es] + 1

Max-pooling is a very interesting technique due to being locally invariant, which
means that even if the inputs shifts a bit around, the output stays constant, this is
extremely useful for visual algorithms. However, if it is enforced too much the network
might struggle to carry useful information, so, the spatial extension must be kept quite
small.

2.1.6 Transfer Learning

Transfer Learning is used to obtain better results while taking less time to train a model,
this is achieved due to reusing previously trained weights. Transfer learning is especially
useful when working with small datasets since it enables to use a larger network while
minimizing the risk of overfitting [20], [125].

Transfer learning is performed by copying the weights of n layers of the base network
to n layers of the target network, the remaining layers from the target network are
randomly initialised [123].

The Transfer Learning pipeline can be described as follows:

1. Train a base network on a base dataset and task;

2. Transfer the features learned to a second target network;

Tomás Sampaio de Freitas Freixo Osório Dissertação de Mestrado

2.Background 21

3. Train the target network with an target dataset and task.

This way, instead of creating new features from scratch, the network will reuse the
generalised features from the previously trained weights [123].

Transfer learning could be done using two different approaches: frozen features and
fine-tuned features. In the frozen features method, the n layers that were copied to the
target network are not trained, only the newly added are trained. In the second method,
all the layers are trained.

2.1.7 Regularize Layers

Regularization is used in order to control the overfitting problem, helping to restrict
the out-of-control parameters. In the following subsections, it will be explored the most
common techniques used in this field.

Batch Normalization

During training, the distributions of each layer’s input changes, which will affect the pa-
rameters of the following layers, difficulting the training of neural networks. To overcome
this issue, generally, lower learning rates are used and careful parameter initialization is
done, which will affect the training time. However, batch normalization acts like a regu-
larizer, allowing higher learning rates and fewer issues from the parameter initialization.
This will permit to obtain faster training while achieving the same accuracy. Batch nor-
malization is applied to every convolutional layer before the activations being applied,
which is computed as follow:

y =
x− E[x]√
Var[E] + ε

× γ + β, (2.35)

where the mean and variance are calculated per-dimension over the mini-batches, γ and
β are a learnable parameter from the vector of size C, where C is the input size. During
training, these layers keep running estimates of its computed mean and variance, which
are then used for normalization during evaluation [54].

Dropout

DNN have a large number of parameters, enabling them to generalise by analysing large
amounts of data, however, overfitting is a common problem. To solve this issue, the
Dropout technique [104] is frequently used.

Dropout is only used during training and generally only on the last layer(s) of the
model. This technique will randomly drop units from the layers (Figure 2.13) by a
previously set percentage, which prevents units from co-adapting too much. This nor-
malization technique has helped major improvements in the model performances.

2.1.8 Early Stopping

A common alternative to regularization is the procedure of early stopping. During the
training phase, the error relative to the training is non-increasing, possibly causing the
system to overfit. To overcome this problem, a solution is to use an independent dataset,

Tomás Sampaio de Freitas Freixo Osório Dissertação de Mestrado

22 2.Background

Figure 2.13: Dropout exemplification on a two hidden layer Neural Network Model:
(a) standard version during the training phase; (b) dropout applied during the training
phase, some random units have been dropped (from [104]).

Figure 2.14: Demonstration of the behaviour of training set error (left) and validation
set error (right) during the training phase of a network. According to the early stopping
method, the training should be stopped around the vertical dashed lines, which corre-
sponds to the point where the error from the validation set reached its minimum (from
[7]).

called the validation set, in which the error will be also evaluated. This way, when
the error from the validation set starts to increase and the error from the training set
continues to decrease (Figure 2.14) the system starts to overfit the data, so the training
can be stopped at this point. Generally, the checkpoint associated with the minimum
error obtained from the validation set is chosen.

2.2 General Concepts

This section explains some general concepts that are useful to better understand how
object detectors work and some techniques that are commonly used.

Tomás Sampaio de Freitas Freixo Osório Dissertação de Mestrado

2.Background 23

Overfitting model
True function
Samples

Figure 2.15: In blue we have a model that is overfitting the sample data (blue dots), that
was generated by adding noise to the true function (orange) (inspired by1).

2.2.1 Overfitting

Overfitting occurs when a system has a low error during training, but it works poorly
in the real-world or when evaluated using independent data. This happens due to poor
generalization by the system (Figure 2.15), which instead "memorizes" all the feature of
the data [3]. Overfitting could happen for many reasons, such as:

• Small training dataset;

• Model to complex;

• Training data too noise (eg. data errors and outliers).

2.2.2 Intersection over Union

Intersection over Union (IoU), also known as Jaccard index or Jaccard similarity coeffi-
cient, is a statistical method of measure similarity of samples sets, which is widely used
in data mining [111], this metric is also used in object detection quite frequently.

IoU is computed as follows [25]:

IoU(A,B) =
|A ∩B|
|A ∪B|

=
|A ∩B|

|A|+ |B| − |A ∩B|
, (2.36)

which consists in dividing the intersected by the union area of two bounding boxes as
shown in Figure 2.16.

1http://scikit-learn.org/stable/auto_examples/model_selection/plot_underfitting_overfitting.html

Tomás Sampaio de Freitas Freixo Osório Dissertação de Mestrado

24 2.Background

Figure 2.16: Visual exemplification of Intersection over Union metric.(inspired by2)

2.2.3 Non-Maximum Suppressor

Non-Maximum Suppression (NMS) is a commonly used tool in object detection. That
occurs because, object detectors produce multiple boxes with high confidence scores near
the target objects, which happens because of the ability of these detectors to generalise.
Since, ideally, its only desirable a bounding box per object, the outputs must be filtered
[92].

To filter the excess of bounding boxes, NMS first sorts them by the confidence given
by the object detector. Then, it picks the bounding boxes with the highest confidences
and discard the ones that overlap them, avoiding multiple boxes overlapping the same
object. Generally, the maximum IoU allowed between boxes is 50%; however, this could
be adjusted according to the dataset [28]. Figure 2.17 shows the effect of applying or not
the NMS.

2.2.4 k-means Clustering

k -means Clustering is an unsupervised learning technique, which means that it does
not need labels for learning. This technique is commonly used to partition data into
homogeneous groups called clusters, where k refers to the number of clusters that the
data will be divided [59] , [1]. Figure 2.18 shows a k -mean Clustering result.

2https://www.pyimagesearch.com/2016/11/07/intersection-over-union-iou-for-object-detection/

Tomás Sampaio de Freitas Freixo Osório Dissertação de Mestrado

2.Background 25

(a)

(b)

Figure 2.17: Comparison between applying or not NMS in an output image from an
Object Detector (a) Input image without applying NMS; (b) Input image applying NMS.
This image is from KITTI Dataset.

Figure 2.18: k -means Clustering with k equal to 3, each cluster is represented by a
different colour.

Tomás Sampaio de Freitas Freixo Osório Dissertação de Mestrado

26 2.Background

Tomás Sampaio de Freitas Freixo Osório Dissertação de Mestrado

Chapter 3

State-of-the-Art in Object Detection

The object detectors can be defined by three main approaches: Classic Object Detectors,
Two-Stage Detectors and One-Stage Detectors.

Classic Object Detectors was the first successful approach using machine learning
techniques. In 2012, after the resurgence of neural networks, with deeper and wider
networks, Two-Stage Detectors appeared, overpassing the results obtained by classical
methods, with better precisions, but achieving a lower frame rates. Then, One-Stage
Detectors appeared, with a different approach, an end-to-end solution, taking advan-
tage of CNN performance and speed. This enabled high frame rates, maintaining high
precisions, comparing with other methods.

In the next section, these methods will be introduced and we will go a bit deeper in
the One-Stage Detectors since it is the approach taken by this thesis.

3.1 Classic Object Detectors

Classic Object Detectors consists of four stages: (1) generating candidate regions on the
given image by the sliding window technique, (2) extracting relevant features from these
regions, (3) classifying and identifying regions through a trained classifier, (4) revise the
detections and optimize their results:

1. Generating Candidate Regions: In this stage, the objective is to obtain the
objects’ location; for that, a sliding-window is passed through the image. The
sliding window should have different dimensions since objects could appear in any
place and with any dimension. This process represents a high computation cost
due to the high number of windows that are redundant.

2. Feature Extraction: After obtaining the objects’ location it is necessary to clas-
sify them, but before, must be extracted the features that will be used by the
classifier. These features will influence the performance of the classifier, however,
they are difficult to design. This difficulty derivates from the variety of external
factor that happen in real-world scenarios (e.g. change of angles, illumination,
moving objects, etc.), that makes difficult to generalise. In contrast, controlled
environments are a lot easier to extract features from, due to their lack of variety.

3. Classification: At this stage, the extracted features will be used by the classifier,
which generally is SVM or Adaptive Boost (AdaBoost) model.

27

28 3.State-of-the-Art in Object Detection

4. Revise Detection Results: After performing the previous steps, the framework
will output multiple windows identifying the same object. To filter them, in order
to obtain only one per object, generally NMS is used.

Classic object detector resort to multiple steps, making it highly complex and time-
consuming, which results in poor performances [127].

One of the first research that used this method was Viola and Jones [114], which
used boosted object detectors for face detection; this lead to a general adoption of this
technique. In [77] this method was used to detect cars, which achieved, in a custom
dataset, a hit ratio of 78% but a false detection ratio of 75%.

3.1.1 Rapid Object Detection by Viola and Jones

Viola and Jones [114] used boosted object detectors, obtaining a system that detects
faces at 15 Frame per Second (FPS), with a detection rate of 95% and a false positive
rate of 1 in 14084. This research is distinguished by three key factors:

1. Integral Image: a new image representation, allowing the detector to computer
rapidly the features used.

2. AdaBoost: a learning algorithm which would select key visual features from the
dataset, allowing to obtain an extremely efficient classifier [31].

3. Cascade Method: combines increasingly more complex classifiers, allowing to
rapidly discard image regions that were background.

This allowed object detectors to be used in real-time applications.
In 2012, with the resurgence of deep learning [58], Two-Stage Detectors quickly came

and lead the detection paradigm. In the next section, we will explain what them.

3.2 Two-Stage Detectors

As referred before, Two-Stage Detectors became a method widely used in object de-
tection. One of the first researches using this method was Selective Search for Object
Recognition [113]. The process of Two-Stage Detectors consists of generating candidate
regions (1) and then of classifying them (2):

1. Generating Candidate Regions: In this stage a Region of Interest (RoI) is
generated which should contain the objects present in the image.

2. Classification: After obtaining the RoI, it is needed to classify the proposed
regions into foreground/background classes 1. R-CNN [36], was a breakthrough
in the Object Detectors field, since it used CNN to perform this stage, allowing
major gains in precision, surpassing other methods, as for example Classic Object
Detectors.

1where foreground corresponds to the regions with objects or RoI, and background regions without
objects.

Tomás Sampaio de Freitas Freixo Osório Dissertação de Mestrado

3.State-of-the-Art in Object Detection 29

Figure 3.1: R-CNN pipeline: (1) the system takes an input image, (2) extracts around
2000 region proposals, (3) computes features for each proposal using a CNN, and (4)
classifies each region using a class-specific linear SVM (from [36]).

R-CNN was an inspiration for many researchers, being upgraded along the years
in terms of speed [35], [43], [89] and by using learned region proposals [22], [83], [35].
Another upgrade was done by joining Region Proposal Network (RPN) the first-stage
(generation of candidate regions) with the second-stage (region classification) into a sin-
gle convolution network, creating the Faster R-CNN framework [35], which numerous
extensions of this framework have been made, e.g. [64], [101], [43].

3.2.1 Regions with Convolutional Neural Networks features

Regions with Convolutional Neural Networks features (R-CNN) [36] surpassed the results
gotten in previous works at the time, still being an inspiration for many researches in
this field.

At the time R-CNN was developed, object detectors generally used regressions or
sliding windows, but these did not obtain great results [23]. So, they opted by using a
region proposal area method [15], which had already obtained good results for object
detection [113] and semantic segmentation [11].

R-CNN was one of the first implementations that used deep CNN to improve object
detection performance. For this they combined two key factors: (1) high-capacity CNN
and (2) transfer learning:

1. CNN: The high-capacity CNN deals with the region proposals, localization and
segmentation of the objects.

2. Transfer Learning: Since the data is limited and is expensive to label new data, it
was used a pre-trained network, to auxiliary the task, followed by a domain-specific
fine-tuning.

Figure 3.1 represents the networks pipeline 2, where first is given the input image to
the system, which will be extracted region proposal areas. After, a CNN will compute
features for each proposal and then an SVM will classify each region. R-CNN achieved
a mean Average Precision (mAP) of 53% on PASCAL VOC [26].

2Pipeline: is the infrastructure surrounding the algorithm. This includes gathering the data, use it
for training, training and export the model for further tests or for production.

Tomás Sampaio de Freitas Freixo Osório Dissertação de Mestrado

30 3.State-of-the-Art in Object Detection

3.2.2 Faster R-CNN

Faster R-CNN [89] is a continuation of previous works, Fast R-CNN [35] and R-CNN
[36], which was able to surpass in precision and frame rate from its predecessors.

To better understand Faster R-CNN, lets first take a quick view on Fast R-CNN.
The main propose of Fast R-CNN was to reduce the detection running time, where they
determinate that R-CNN biggest bottleneck was the region proposal computation. To
improve its speed, they used RPN, which consist of a Fully CNN that simultaneously
predicted bounding boxes and confidence scores for each position. This enabled an end-
to-end approach for training, which generated high-quality region proposal.

Faster R-CNN to overpass Fast R-CNN, merged RPN further into its system, this
resulted in a single network that shares the convolutional features in both stages [43],
[35], which the first stage is a Fully CNN that proposes regions and the second stage is the
Fast R-CNN detector that uses the proposed regions. To improve further its performance,
they introduce a new feature, "anchor" boxes. "Anchor" boxes are used as references for
the objects, which have different scales and aspect ratios.

To train the model, they alternate between fine-tuning the region proposal task and
the object detection task. This unifies the RPN and Faster R-CNN object detection
network, which will converge quickly and where the convolutional features will be shared
by both tasks, as stated before.

Faster R-CNN can achieve 5 FPS on a Graphics Processing Unit (GPU), with state-
of-the-art precisions in multiple datasets, obtaining only 300 proposals per image, instead
of 3000 as R-CNN. To achieve this results, Faster R-CNN takes advantage of the GPU
reimplementing methods that generally are implemented on the Central Processing Unit
(CPU). This made the computational cost of the proposal areas have a substantial
decrease, where each iteration only took 10ms per image, cutting the time taken by 50%
compared to its predecessor.

With Faster R-CNN they were able to obtain a 69.9% mAP in PASCAL VOC test set
[26], with VGG-16 architecture [121], and in MS COCO [65], with the same architecture,
they obtained a 73% mAP, at 15 FPS.

3.3 One-Stage Detectors

One-Stage Detectors merges the steps of Two-Stage Detectors further, resulting just in
a network that receives an input image and returns their bounding boxes, with almost
no mid-steps. These detectors can reach much higher FPS than other solutions.

One of the first frameworks using this method was OverFeat [30], which inspired a
lot of researches in this field. Recent work on One-Stage Detectors, such as YOLO [87],
YOLO 9000 [88] and Single Shot Detection (SSD) [66], demonstrates promising results,
obtaining much faster detectors comparing to Two-Stage Detectors or other approaches
taken, but they obtain a worse precision then Two-Stage Detectors. However, RetinaNet
[64] tried a different path, instead of focusing on the speed they tried to get higher
precisions, which they were able to achieve, beating at the time the benchmarks of Two-
Stage Detectors.

Since our aim is to detect cars and pedestrians in real-time, we will need high frame
rates. For that reason, our design will coincide with One-Stage Detectors like YOLO
[88], [87] and SSD [66] or other researches in this field. The next subsections will go into

Tomás Sampaio de Freitas Freixo Osório Dissertação de Mestrado

3.State-of-the-Art in Object Detection 31

Figure 3.2: YOLO first divides the image into a S × S grid, which each grid cell will
predict B bounding boxes, with an associated confidence C per bounding box, and the
class probabilities c for each cell (from [87]).

more detail on the papers since they are more relevant to our work.

3.3.1 You Only Look Once

Previous works on One-Stage Detectors repurposed classifiers to perform detection, how-
ever, YOLO [87] opts to take a different approach, where they "frame object detection as a
regression problem to spatially separate bounding boxes and associated class probabilities"
[87].

Since the YOLOs approach consists in using an end-to-end system, relying mainly on
the network that has a constant output, however, the number of objects varies. To deal
with the variation on objects per image, YOLO opts by dividing the input image into
an S × S grid, which each cell of the grid will have n predictors 3, where an object is
assigned to a grid cell if its bounding box centre falls inside the cell. Each cell will also
output the object class if the cell contains an object. This grid is designed to enforce
spatial diversity, making the predictors uniformly distributed, Figure 3.2 illustrates this
pipeline.

To train, YOLO uses full-size images as input data, which the system tries to predict
the object positions. Then, with the usage of a loss function, it is compared the predicted
position with the GT, which computes an error that will be optimized accordingly. To

3A predictor is responsible by localizing objects in the image, outputting the position and dimensions
of the bounding box and a confidence of its prediction, in some systems it also classifies the object in
question.

Tomás Sampaio de Freitas Freixo Osório Dissertação de Mestrado

32 3.State-of-the-Art in Object Detection

optimize this network during the training phase, the following loss function is used:

Loss =λcoord

S2∑
i=0

B∑
j=0

1
obj
ij

[
(xi − x̂i)2 + (yi − ŷi)2

]
+

λcoord

S2∑
i=0

B∑
j=0

1
obj
ij

[(√
wi −

√
ŵi

)2
+

(√
hi −

√
ĥi

)2
]

+

S2∑
i=0

B∑
j=0

1
obj
ij

(
Ci − Ĉi

)2
+

λnoobj

S2∑
i=0

B∑
j=0

1
noobj
ij

(
Ci − Ĉi

)2
+

S2∑
i=0

1
obj
i

∑
c∈classes

(
pi (c)− p̂i (c)

)2
, (3.1)

where the variables with a hat represent the predictions and without the GT, xi and yi
are the centre coordinates of a bounding box, and wi, hi are the according width and
height of the i-th cell; pi(c) is the class probability of a given cell, which the GT of c
is represented by a one-hot vector 4; Ci is the confidence that each predictor outputs,
allowing to measure how well the predictor "thinks" the prediction was made; 1 is a mask
that will only allow computations to be made on the predictors that had an allocated
GT, if the superscript is equal to obj, or the remaining ones if the superscript is equal to
noobj. The parameters λcoord, λnoobj are a scalar factor that increases or decreases the
importance of an element in the loss calculation.

During training, the scarce of label data is a common problem, so, during YOLOs
development, it was used two methods to overcome this issue. Instead of training the
model from scratch, first was trained a custom model for classification with ImageNet
dataset [56], [93] with an input image of 224 by 224 pixel, then they double its input
resolution and convert the network to perform object detection by adding convolution
layers to the pre-trained network. The process of adding new layers was shown that helps
networks to learn new tasks by [90].

YOLO [87] is a One-Stage Detectors which largely focus on delivering high frame
rates, but it lacks in precision comparing to Two-Stage Detectors. Within the first
released version, they have 3 different architectures: Fast YOLO (155 FPS, 63.4% mAP),
YOLO (45 FPS, 63.4% mAP) and YOLO VGG-16 [121] (21 FPS, 66.4% mAP) trained
on PASCAL VOC [24].

Limitations of YOLO

Since YOLO imposes strong spatial constraints on bounding box predictions, this limits
the number of objects that it can detect. Another issue with this model is that it learns
to predict bounding boxes from data and, therefore, struggles to generalize new objects,
in other words, it does not detect well objects of a trained class that are a lot different

4A one-hot vector is a 1×N matrix, where N is, in this case, the number of classes, which the index
of the GT is equal to 1 and the rest of the vector is zero.

Tomás Sampaio de Freitas Freixo Osório Dissertação de Mestrado

3.State-of-the-Art in Object Detection 33

from the trained ones. It also performs poorly on detecting small objects, this occurs
because the loss function treats in the same way errors small or large objects.

3.3.2 YOLO 9000

YOLO 9000 [88] consists of an improved version of YOLO [87], which allowed to detect
over 9000 object categories, achieving a higher precision with similar FPS.

YOLO 9000 authors observed that the datasets for classification were more complete
than for object detection, where classification datasets commonly have thousands of
classes and millions of examples [64], [128], however, object detection datasets generally
have dozens of classes and a few thousands of examples [26], [93], [64]. This happens
mainly because the labelling cost is very different, being a lot cheaper to just classify
images. For that reason, YOLO 9000 takes advantage of classification datasets proposing
a joint training between detection and classification. This enabled YOLO 9000 achieving
this perk.

As we said before, YOLO 9000 also surpasses the precision levels of its predecessor.
To achieve that, instead of applying a deeper and larger network as commonly is done
[121], [107], [43], since they also wanted to maintain their frame rates high, they opted
by simplifying the networks’ training, making the representations easier to learn. For
that they used the following techniques: (1) Batch Normalization, (2) High-Resolution
Classifier, (3) Convolution With Anchor Boxes, (4) Dimension Cluster, (5) Fine-Grained
Features, (6) Multi-Scale Training, which can be defined as follows:

1. Batch Normalization: This method not only helps to regularize the model but
also eliminates the need for other forms of regularization [54]. Using this method
on all the convolution layers YOLO got an improvement in mAP of more than 2%.

2. High-Resolution Classifier: Generally, state-of-the-art detection methods use a
pre-trained model on ImageNet [56], so, they first trained a network with an input
resolution of 224x224 pixel, when it finished, they increased it to 448x448 pixel and
fine-tuned it, then they converted this network to perform detections. With this
process, they were able to gain increased in mAP of almost 4%.

3. Fine-Grained Features: In order to improve one of the biggest limitations of
YOLO, detecting small objects, they used finer-grained features for localizing
smaller objects, this increased the performance by 1%.

4. Convolution With Anchor Boxes: In YOLO 9000 it was removed the fully-
connected layers, turning the model to an FCN. They also used anchor boxes
to predict the bounding boxes, allowing to classify each prediction in each cell
independently. Despite using anchor boxes, the mAP decreased, however, the recall
increased.

5. Dimension Cluster: To be easier for the network to learn, the anchor dimensions,
instead of being picked by hand, were obtained by running a k -means cluster, which
got the priors automatically.

6. Multi-Scale Training: To make the model more robust, they train the model
with different input sizes, this could be achieved because the model only uses con-
volutional and pooling layers, which can be resized on the fly.

Tomás Sampaio de Freitas Freixo Osório Dissertação de Mestrado

34 3.State-of-the-Art in Object Detection

With all these improvements was possible to increase the mAP to about 76.8% on
PASCAL VOC 2007 [25], and still having 67 FPS with a resolution of 416 by 416 pixels.

3.3.3 SSD: Single Shot MultiBox Detector

SSD appeared after the first version of YOLO, which resulted, naturally, in higher preci-
sions and frame rates. To increase its performance they used a standard architecture for
image classification and then added an auxiliary structure to the network. But their key
difference, comparing with YOLOs approach, was that SSD combines multiple feature
maps with different resolutions, which helped to deal with different size objects [100],
[41], [85]. Some other key features were also developed, such as:

Convolution predictors for detection: the feature layers that were added can
produce a fixed number of predictions using a set of convolution filters.

Default boxes and aspect ratios: the default anchors/priors were associated with
each feature map cell.

Matching strategy: to allocate the GT with the anchors, it is calculated the IoU
between them. If the IoU is higher or equal than 0.5 they are matched, which will mean
that a higher number of predictors will be trained at each iteration 5. This allowed the
network to predict with high scores for multiple overlapping default boxes.

Training objective: SSD loss function is inspired from the MultiBox objective
function [22], [109], however, can deal with multiple object categories, which is defined
by a weighted sum of the localization loss (Lloc) and the confidence loss (Lconf):

L(x, c, l, g) =
1

N
(Lconf(x, c) + Lloc(x, l, g)), (3.2)

where x is an indicator for matching the anchors to the GT and N is the number of
labels matched to the default boxes, however, if N = 0 then the loss is set to zero. This
way creating some kind of mask to only calculate the loss in the positions where exist an
object. For the localization loss Lloc, it was used a smooth Mean Absolute Error (L1) [35]
between the predicted box (l) and the GT box (g) parameters. The confidence loss Lconf
is a normalized exponential function (softmax) loss over multiple classes confidences (c).

Hard negative mining: Generally the foreground represents a smaller area than
the background, this creates an imbalance between true positives and true negatives.
For this reason, SSD opts by only using the highest confidence loss for each anchor and
chooses the top ones so that the ratio between them is at least 3:1 (positives, negatives).
They claim that this approach leads to a faster and more stable optimization.

Data augmentation: As a way to make the model more robust, was performed
virtual data augmentation. For that, besides vary the input object sizes by changing
shapes and perform flips, they also have used one of the following options during training:

• Use the entire original input image;

• Sample a patch so that the minimum IoU is 0.1, 0.3, 0.5, 0.7 or 0.9;

• Randomly sample a patch.

5An Iteration is the process doing a forward and then a backward propagation.

Tomás Sampaio de Freitas Freixo Osório Dissertação de Mestrado

3.State-of-the-Art in Object Detection 35

The size of each patch was [0.1, 1] of the original image size and the aspect ratio was
between 1

2 and 2. After this, they resized the image to a fixed size and applied some
photo-metric distortions similar to the ones described by [47].

After applying these methods, they got two versions, a network with a 300x300 pixel
input image, which achieves on PASCAL VOC 2007 74.3% mAP at 59 FPS and another
network with 512x512 input, which got 76.9% mAP and 22 FPS.

3.3.4 Focal Loss for Dense Object Detection

Focal Loss for Dense Object Detection [64] resulted in a breakthrough in One-Stage
Detectors, since until now, the leading models in precision where Two-Stage Detectors,
however, they were able to surpass all methods.

For this achievement, RetinaNet first discovered that the biggest issue that One-
Stage Detectors face is the foreground/background class imbalance, as boosted detectors
[114], [19] and Deformable Part Model (DPM) [27] or more recent works, SSD [66],
dealt. This imbalance causes an inefficiency in training since a lot of background areas
do not contribute with useful data to train, which leads to overwhelming training and
degenerated models.

A common solution for foreground/background class imbalance is to perform hard
negative mining [114], [106], [27], [101], [66], which sample hard examples during train-
ing or using more complex sampling/reweighing schemes [8], [42]. However, this paper
created the Focal Loss, which allowed to efficiently train on all examples. To compute
this loss, they reshaped the cross-entropy loss function in order to down-weight easy
examples, focusing on the hard ones. For this, they created a modulating factor:

(1− pt)γ , (3.3)

where γ is a tunable parameter which must be higher or equal to zero, pt can be defined
by:

pt =

{
p if y = 1

1− p otherwise,
(3.4)

where p is the model estimated probability for the class with label y = 1.
So, with (3.3) and (3.4), the Focal Loss is computed as follows:

FL(pt) = −αt(1− pt)γlog(pt), (3.5)

where α and γ are tunable parameters. The focusing parameter γ smoothly adjusts the
rate at which easy examples are down-weighted (Figure 3.3); α is used to balance the
loss function, which also helped improve accuracy. It was also observed that if this loss
is combined with a sigmoid operation for computing p, also results in a better numerical
stability.

RetinaNet surpassed all other object detectors on MS COCO [65], achieving a 40.8%
mAP, where YOLO 9000 obtained 21.6%, SSD 513x513 31.2% mAP and the state-of-
the-art at the time, Faster R-CNN with Top-Down Modulation (TDM) [101] achieved a
36.8% mAP.

Tomás Sampaio de Freitas Freixo Osório Dissertação de Mestrado

36 3.State-of-the-Art in Object Detection

Figure 3.3: Different variations of γ in the Focal loss (from [64]).

3.3.5 SqueezeDet

SqueezeDet is a small FCN specialized in object detection, which is inspired in YOLO
[87] but uses SqueezeNet architecture [52] as his backbone. This architecture can achieve
AlexNet precision, however, using far fewer parameters.

SqueezeDet achieved on KITTI dataset [33] a mAP of 76.7%, reaching up to 57.2
FPS.

3.4 Summary

Object detector suffered a lot of changes throughout time. Nowadays, the research is
mainly focused on Two-Stage Detectors and One-Stage Detectors, where Two-Stage De-
tectors generally obtain better precision but lower frames rates comparing to One-Stage
Detectors, with the exception of RetinaNet [64] that has similar frame rates as Two-Stage
Detectors but obtains higher precisions.

For this thesis it will be used some ideas from the papers described here, sometimes
to tweak our model, others just to prove some concepts. However, the main inspiration
came from YOLO [87], YOLO 9000 [88] and SqueezeDet [116] to construct our model.

Tomás Sampaio de Freitas Freixo Osório Dissertação de Mestrado

Chapter 4

Model Characterization

This section explains the options taken during the process of creating the base structure
of the model. For that, it will be described the model’s architecture and the loss function.

4.1 Architecture

The architecture plays a major role in the systems’ performance. The majority of the
recent researches on CNNs is focused on increasing precision in computer vision problems.
This fact can be observed on one of the most known competitions of image classification,
ImageNet [56], [93], in which the results were surpassed year after year [93]. The majority
of the newly proposed models’ architecture tend to become deeper and larger, meaning
that they would have a higher number of parameters, resulting in a longer inference
time1.

Our goal is to have a fast feedback from the network, which means to obtain a low
inference time. This is needed because our system will be used in a self-driving car, so it
must perform in real-time. To understand what it means to run in real-time its needed
a benchmark. The psycho-motor reaction of a human-being to trigger a brake pedal, in
a real-world scenario, falls between 0.42 and 0.92 seconds [57]. However, this includes
the process of evaluating the scenario and reacting to it. Considering that this networks
only detects the objects, our inference time must be the lowest possible. So we assume
that for an object detector to run in real-time it must reach to at least 30 FPS, which is
the same frame rate as the most common cameras available in the market.

A model will work in real time if it contains a low amount of parameters. This
characteristic will lower the computational cost, achieving higher frame rates, however,
for an object detector be used in a self-driving car it must achieve high precision as well.

A Model can achieve high precision even with low amount of parameters, since for a
given precision exists multiple architectures [51]. For example, Network In Network (NiN)
[64] has about 8x fewer parameters comparing to AlexNet [58], but they have similar
precision. Furthermore, GoogLeNet [107] and VGG [121], share a similar precision, even
so, GoogLeNet as 10x fewer parameters. This is especially possible due to the usage of
smaller filters sizes in the convolutions and by using a FCN. This way, it was possible to

1Inference time corresponds to the time that the network takes to make the forward propagation
during evaluation. In other words, is the time that the network takes since it is given its input data until
outputs predicted data.

37

38 4.Model Characterization

Layer Kernel s1x1 e1x1 e3x3
name/type Size / Stride
Input Image
Convolution 3x3/2 (96)
MaxPool 3x3/2
Fire 1 16 64 64
Fire 2 16 64 64

MaxPool 3x3/2
Fire 3 32 128 128
Fire 4 32 128 128

MaxPool 3x3/2
Fire 5 48 192 192
Fire 6 48 192 192
Fire 7 64 256 256
Fire 8 64 256 256

Convolution 1x1/1 (1000)
AvgPool 13x13/1

Table 4.1: SqueezeNet Architecture.

reduce the number of parameters and connections but still maintaining high precisions.
A convolutional network with fewer parameters has significant advantages, such as

training faster than larger networks. This happens because the parameters communicate
between them, then with fewer parameters, will also have fewer connections [51], result-
ing in a faster development and training time. For these reasons, we decided to select
SqueezeNet [52] as our architecture.

4.1.1 SqueezeNet

SqueezeNet is an FCN, which the goal is to have the same precision as AlexNet [58] but
with fewer parameters. They were able to achieve this with about 50x fewer parameters
then AlexNet.

Lowering the parameters is essential, since this allows a more efficient distributed
training, less overhead when exporting new models to clients and in embedded platforms.
SqueezeNet resorts to many strategies to achieve this goal, such as:

• Replace e3×3 filters with 1 × 1 filters: this allows decreasing the number of
parameters by a factor of 9.

• Decrease the number of input channels to e3×3 filters: since the number of
parameters of a layer is equal to the number of input channels times the number
of filters times the filter size. It is not only essential to decrease the filters sizes,
but also the number of input channels. For this reason, SqueezeNet decreases the
number of input channels to e3×3 filters by using squeeze layers, which will be
described further.

• Downsample the output from the layers late in the network so that
convolution layers have large activation maps: each convolutional layer in a

Tomás Sampaio de Freitas Freixo Osório Dissertação de Mestrado

4.Model Characterization 39

Figure 4.1: Fire Module, which is the building block of SqueezeNet (from [52]).

CNN outputs an activation map with a spatial resolution that is at least 1x1, this
width and height are determined by the size of the input data and the choice of the
downsampling applied to the layers. Generally, this downsampling is done by the
stride in the convolution and pooling layers [58], [107], [121], since large activation
maps can lead to higher classification precision, with all else held equal, as shown
by [43], the large strides are concentrated at the end of the network.

The first and second strategies are more concerned with minimizing the number of
parameters to have a small network and the last strategy was chosen to achieve higher
precisions.

To deploy the strategies earlier described, SqueezeNet created what they called Fire
modules (Figure 4.1). A Fire module is comprised of: a squeeze convolution layer (which
has only 1 × 1 filters), feeding into an expand layer that has a mix of 1 × 1 and 3 × 3
convolution filters. These layers have three hyper-parameters s1×1, e1×1 and e3×3, which
represent:

• s1×1: number of channels in the squeeze layer with 1× 1 filters.

• e1×1: number of channels in the expand layer with 1× 1 filters.

• e3×3: number of channels in the expand layer with 3× 3 filters.

For the Fire module to work, it is needed that the squeeze layer has fewer channels than
the summed expand layers (e1×1 + e3×3), limiting the number of input channels of the
expand layer with 3× 3 filters.

SqueezeNet does not contain only Fire modules and also the Fire modules are not all
equal. So, SqueezeNet architecture starts with a convolution layer, followed by 8 Fire
modules, ending with a final convolutional layer. The number of filters per Fire module
is gradually increased from the beginning to the end of the network. It also contains a
max-pooling layer with a stride of 2 after the first convolution, the fourth and eight Fire
module and in final layers, as shown in Table 4.1.

Tomás Sampaio de Freitas Freixo Osório Dissertação de Mestrado

40 4.Model Characterization

Layer Kernel s1x1 e1x1 e3x3
name/type Size / Stride
Input Image
Convolution 3x3/2 (96)
MaxPool 3x3/2
Fire 1 16 64 64
Fire 2 16 64 64

MaxPool 3x3/2
Fire 3 32 128 128
Fire 4 32 128 128

MaxPool 3x3/2
Fire 5 48 192 192
Fire 6 48 192 192
Fire 7 64 256 256
Fire 8 64 256 256
Fire 9 96 384 386
Fire 10 96 384 386

Convolution 3x3/1 (n)

Table 4.2: SqueezeDet Architecture.

Other strategies applied

Besides the main strategies and methods described before, some other techniques were
also used, such as:

• For the outputs of the layers, with 1 × 1 or 3 × 3 filters, having all the same size,
it was added a 1-pixel border of zero-padding in the input data of the expansion
layers with 3× 3 filters.

• The activations applied to the layers of SqueezeNet were ReLU activations [74].

• To prevent early stopping due to overfitting Dropout [104] a ratio of 50% was used
as a regularization method.

• SqueezeNet did not use fully-connect layers, because is inspired on the NiN [64]
architecture also to lower the number of parameters.

• The starting learning rate used in SqueezeNet was 0.04, which was decreased lin-
early throughout the training phase as described in [72].

hese techniques made possible that SqueezeNet to have the same precision as AlexNet
but with far fewer parameters.

4.1.2 Vanilla SqueezeDet Architecture

SqueezeNet was created to address the ImageNet Competition [93], which means that
the output layer gives 1000 values to address each class represented in this competition.

Tomás Sampaio de Freitas Freixo Osório Dissertação de Mestrado

4.Model Characterization 41

Since our objective is to not only classify but also to detect objects, we need to modify
this architecture to perform our task.

Before starting modify the network,firstly the desired output must be defined. As
said in Section 3.3, each image, generally, has a different number of objects. To deal
with this, the most common way is to divide the image with an x by y grid [64],[116],
[88], where it will be performed i predictions in each of these cells. These predictions
will output five scalars plus the number of classes, resulting on an output vector of
output = (nx, ny, npredictors, 5+nclasses). When the desirable output given by the network
is defined, it is possible to start modifying architecture.

First, the last convolution and average-pooling layer that was specialized in classi-
fication it will be removed, likewise as with YOLO 9000 [88]; then two Fire modules
and a convolution layer it is added, similar to other models [90], [116]. The following
hyper-parameters can characterize these Fire modules: s1×1 with 96 channels, e1×1 with
384 channels and e3x3 with 386 channels, as shown in Table 4.2. The convolution layer
contains a kernel size of 3 × 3 and a stride of 1. The number of channels of the last
convolution layer will depend according to the number of classes and predictors per cell,
being equal to npredictors × (5 + nclasses).

4.2 Objective Function

Deep learning, using supervised learning, involves optimization, which could vary between
minimization or maximization. To accomplish this optimization is needed an objective
function or criterion, that may also be called cost, loss or error function when minimiza-
tion is used. This function measures how well the model is doing accordingly with the
predictions and the GT, this way, an objective function guides the model through the
training, improving his performance [38].

For our framework, we created the vanilla cost function, which is described in the
next subsection. This objective function it is mainly an interpretation of YOLO [87] and
SqueezeDet [116], being a fusion of both concepts.

4.2.1 Vanilla Cost Function

The vanilla cost function will be the used basic formulation in the cost function. In this
version the standard methods to detect objects were used. Throughout the course of
the experiments small tweaks in the vanilla cost function will be performed affecting its
performance. This way we can understand how these tweaks affect the performance and
which ones are favourable to our framework. Since our objective is to create a One-Stage
detector, all the computation will have to be done by the network, so the cost function
must deal with an end-to-end solution.

Object Allocation

To better understand how the vanilla cost function works it will be first explained how
GT was generated.

The GT provided to the network represents the way it is allocated labels to the
predictors. Since the number of objects differs from image to image, but the output
does not, it must be found a way to work around. If, for example, it is given n labels

Tomás Sampaio de Freitas Freixo Osório Dissertação de Mestrado

42 4.Model Characterization

(a) Representation of grid "division" . (b)

Figure 4.2: In (a) is represented the grid that is applied on each image to create a
spatial distribution, (b) shows how it is allocated a cell to a specific GT. The red dot
is the centre of the bounding box, the green box is the limited area of the cell and the
red box is GT.

Figure 4.3: Offset between the cell and bounding box centre.

to the model, and they are not spatial constrict, the network will perform poorly. This
happens for multiple reasons, for instance, it is not guaranteed a uniform distribution
of the predictors, which would agglomerate around the easier to detect while ignore the
hard ones. To overcome this problem, it must be ensured a uniform spatial distribution
of the predictors, so to each predictor was allocated an specific area.

To create this uniform spatial distribution, it is generated an Sx by Sy grid on the
image, as shown in Figure 4.2 (a). Each grid cell will ensure an uniform distribution, only
"allowing" the predictors to look at the objects that falls inside them. The allocation
of an object to a specific cell is determined by its centre position, as shows Figure 4.2
(b). These objects are represented by a bounding box, which is defined by x, y centre
coordinates, the width w and height h.

The labels spatial positions are encoded to easier the network learning . As the
positions of the cells are well defined, when an object falls in a cell it is regressed from
where it was felt inside the cell, instead of from the global position. For that, it is
calculated the offset between the cell and the object (Figure 4.3), which is computed as
follows:

Tomás Sampaio de Freitas Freixo Osório Dissertação de Mestrado

4.Model Characterization 43

Figure 4.4: Anchor allocation to an object. Solid lines represent anchors, and the dashed
line the object. The green anchor has the highest overlap with the object.

x′i = xG − xi,
y′j = yG − yj ,

(4.1)

where x′i and y
′
j are the offset position, xG and yG the GT position given by the label,

xi and yj the coordinates of cell centre position. Which i and j correspond to the cell
localization within the grid.

To width and height GT, it is used a different process. As explained in subsection
4.1.2, the output of the network will be output = (nx, ny, npredictors, 5+nclasses). Meaning
that each cell from the grid will output n predictors. To facilitate the model’s training,
each predictor should specialize in a particular object shape, since each class has its own
particular shape, for example, cars tend to be wider and the pedestrians thinner. Using
this analogy, it can be easily understood that an object from a particular class has a
predisposition to have a given shape. To allocate these shapes to the predictors are used
the priors, also known as anchors [89].

The priors, or anchors, can be created in different ways. The easiest one is by hand
pick, when the researcher already has an idea of the object shapes and selects the most
common ones. Another alternative is to cluster the data, recurring, for example, to a
k -means Cluster.

To allocate an object to a prior, the IoU between them is calculated in order to know
which is more fitted to learn about that object. Figure 4.4 shows how this process is
made, considering that the dashed line is the object and the solid lines are the anchors.It
can be observed that the green anchor has the highest overlap of the object and it will
be the most fitted to learn its features.

Similar to the positional allocation, the width and height can also be encoded, as
shown in the next equation:

w′k =
wG

wk
,

h′k =
hG

hk
,

(4.2)

Tomás Sampaio de Freitas Freixo Osório Dissertação de Mestrado

44 4.Model Characterization

where w′k and h′k represent the ratio between the GT width and height (wG, hG) and the
priors width and height (wk, hk), where k is the prior.

After (4.1) and (4.2), it is performed one more transformation, where x′i and y
′
jcoordinates

are divided by the allocated anchor:

δxGijk =
x′i
wk
,

δyGijk =
y′j
hk
,

(4.3)

And for w′ and h′ it is computed their logarithms:

δwGijk = log(w′k),

δhGijk = log(w′k),
(4.4)

where δxGijk, δy
G
ijk, δw

G
ijk and δhGijk represent values given to the network during training.

These computations, (4.3) and (4.4), allows the network deal in a better way with
different sized objects due to give different weights according to the object size.

Loss Function

After generating the GT, it must be calculated the loss function, due to the high level of
its complexity is divided into three segments: position, confidence and classification loss.

Position Loss

Position loss will compute the error corresponding to the localization of objects. For
this, its calculated the square error between the prediction and GT of δxijk, δyijk, δwijk
and δhijk, and then it is multiplied by the mask 1objijk , this way only computing the loss
for predictors that had an associated object, and finally, sum all these values. These
computations are denoted as follows:

Pos.Loss =

Sx∑
i=0

Sy∑
j=0

B∑
k=0

1
obj
ijk

[(
δxGijk − δxPijk

)2
+
(
δyGijk − δxPijk

)2]
+

Sx∑
i=0

Sy∑
j=0

B∑
k=0

1
obj
ijk

[(
δwGijk − δwPijk

)2
+
(
δhGijk − δhPijk

)2]
, (4.5)

where the superscript P represents the predicted values, and G the GT, Sx and Sy
represent grid size, and B the number of predictors per cell.

Confidence Loss

The confidence that the network outputs (CP), consists in the predicted value of the IoU
between the predictor and predicted object. Since IoU varies between [0, 1], it is applied
a sigmoid filter to the confidence outputted by the network, enforcing this interval.

The confidence loss was divided into two steps, when a predictor has an allocated
object and when it does not. To calculate the first step, after each iteration it must be

Tomás Sampaio de Freitas Freixo Osório Dissertação de Mestrado

4.Model Characterization 45

calculated the IoU (CG) between the predictors and the allocated objects. Afterwards,
it is used the following equation to compute its loss:

Conf.Lossobj =

Sx∑
i=0

Sy∑
j=0

B∑
k=0

1
obj
ijk

(
CGijk − σ(CPijk)

)2
, (4.6)

where σ refers to the applied sigmoid function.
If a predictor does not have any object allocated, its confidence should be equal to

zero, however its common to be higher than that, so it is also computed the following
loss:

Conf.Lossnoobj =

Sx∑
i=0

Sy∑
j=0

B∑
k=0

1
noobj
ijk

(
σ(CPijk)

)2
, (4.7)

Classification Loss

Classification loss will calculate the error made when predicting an object class. For
that, it is computed the cross-entropy between the predicted classes and GT, similar to
positional loss. It will be only calculated the loss for the predictors that had an allocated
object. This computation is denoted as follows:

Class.Loss(c, class) =

Sx∑
i=0

Sy∑
j=0

B∑
k=0

1
obj
ijk - log

exp(c[class])∑
l

exp(c[l])

 , (4.8)

where class is the GT, c are the predictions made.

Total Loss

After calculate all the necessary losses, they must be concatenated . For that, it is used
the following function:

Loss =
λcoord∑
1
obj
ijk

Pos.Loss+

λconf∑
1
obj
ijk

Conf.Lossobj+

λconf∑
1
noobj
ijk

Conf.Lossnoobj+

1∑
1
obj
ijk

Class.Loss, (4.9)

where λcoord and λcoord are balance parameters. Notice that each summed loss is divided
by the number of elements of their mask, obtaining this way, the mean error per predictor.

During training, the balance parameters were set to λcoord = 75 and λconf = 100.

Tomás Sampaio de Freitas Freixo Osório Dissertação de Mestrado

46 4.Model Characterization

4.2.2 Inference

Since the model was trained using an encoded GT, during the inference, its output values
must be decoded by inverting the encoding equations.

To obtain the positional coordinates referent to a predictor, it must be performed the
following computation:

xP = xi + wkδ
P
ijk,

yP = yj + hkδ
P
ijk,

(4.10)

where xP , yP are its the decoded x and y coordinates resulted from inverting (4.1)
and (4.3). To decode the width and height of the object, it is computed the following
equation:

wP = wkexp(δw
P
ijk),

hP = hkexp(δh
P
ijk),

(4.11)

where wP , hP are the decoded coordinates width and height, which resulted from inverting
(4.2) and (4.4).

To obtain the confidence value of a prediction the sigmoid function must be applied as
well, otherwise, the output interval will be different than [0, 1]. For the class probabilities,
it is also applied the softmax.

At test time the conditional class probability it is multiplied by the individual box
confidence predictions:

Pr(Classi|Object)× Pr(Object)× IOUtruth
pred = Pr(Classi)× IOUtruth

pred , (4.12)

which gives the class-specific confidence scores for each box.
After decoding all the network outputs, the predicted bounding boxes are passed

throughout an NMS algorithm.

Tomás Sampaio de Freitas Freixo Osório Dissertação de Mestrado

Chapter 5

Data Handling

This chapter discusses the KITII Dataset [33], it is also explained how the augmentation
data was performed during training. 0

5.1 KITTI Dataset

Datasets are a key factor for any machine learning method, without them, it would not
be possible to perform these techniques. Since we want to create an object detector for
a self-driving car, it must be chosen a dedicated dataset to this objective, so we opt by
KITTIs dataset [33].

KITTI Dataset was developed by Karlsruhe Institute of Technology and Toyota Tech-
nological Institute of Chicago, which consists of real-world computer vision benchmarks
of roads, being one of the most known in this field. This dataset counts with benchmarks
for multiple tasks such as optical flow, visual odometry/Simultaneous Localization and
Mapping (SLAM), 3D object detection, 2D object detection and road segmentation,
these benchmarks also have an associated evaluation metric.

To collect the data, they used an autonomous driving platform, which contains four
high-resolution cameras, a Velodyne laser scanner and a localization system. The data
was captured around the mid-size city of Karlsruhe, in rural areas and highways. The
data is provided in a raw format, containing the corresponding labels for each task, where
each image has up to 15 cars and 30 pedestrians.

For our experiments, it was used the 2D object detection benchmark, which con-
tained 7481 labelled images from real-world scenarios, which its labels had the following
information:

• Bounding box: left, top, right, and bottom pixel coordinates of the bounding
box.

• Object class: which could be "Car", "Van", "Truck", "Pedestrian", "Person_sitting",
"Cyclist", "Tram", "Misc" or "DontCare".

• Truncation: percentage of the object that leaves image boundaries, in other words,
when the bounding box does not correspond to the full extent of the object.

• Object occlusion: which could be fully visible, partly visible, largely occluded or
unknown.

47

48 5.Data Handling

KITTIs benchmark for 2D object detection only evaluates the detection of cars, pedes-
trians and cyclists, despite existing other classes. This benchmark is also divided into
three difficulty levels: easy, medium and hard, which are defined as follows:

• Easy: Minimum bounding box height 40 Px, Maximum occlusion level: Fully
Visible, Maximum Truncation: 15%.

• Medium: Minimum bounding box height 25 Px, Maximum occlusion level: Fully
Visible and Partly occluded, Maximum Truncation: 30%.

• Hard: Minimum bounding box height 25 Px, Maximum occlusion level: Fully
Visible, Partly occluded and Largely occluded, Maximum Truncation: 50%.

5.1.1 Evaluation Methodology

The evaluation tool of KITTIs 2D benchmark follows PASCAL criteria [25], which needs
seven parameters: image reference, object class, confidence, left, top, right, bottom pixel
coordinates. Using these parameters it is calculated the precision-recall curve and the
mAP.

Metrics

As said before, PASCAL criteria use the precision-recall curve and mAP to evaluate the
models’ performance. So, first let’s understand these concepts:

• Precision is the fraction of relevant retrieved information over the retrieved in-
formation, in object detection, this will measure the percentage of detections that
were correct.

• Recall is the fraction of relevant retrieved items over the total amount of relevant
items, in object detection, this will measure the percentage of detect objects in an
image.

• mAP is the mean of the average precision scores.

• mean Average Recall (mAR) is the mean of the average recall scores.

To calculate precision and recall True Positive (TP), False Positive (FP) and False Neg-
ative (FN) are needed, which are defined as:

• TP: number retrieved and relevant items.

• FP: number retrieved but not relevant items.

• FN: number not retrieved but relevant items.

The calculation of precision for a given class c, is computed as follows:

Precisionc =
TPc

TPc + FPc
. (5.1)

Tomás Sampaio de Freitas Freixo Osório Dissertação de Mestrado

5.Data Handling 49

For calculating mAP:

mAP =

classes∑
c

TPc

classes∑
c

(TPc + FPc)

(5.2)

The recall of a given class c, is denoted as:

Recallc =
TPc

TPc + FNc
. (5.3)

For calculating mAR:

mAR =

classes∑
c

TPc

classes∑
c

(TPc + FNc)

(5.4)

All these calculation are based on [95].

Calculating Metrics

To evaluate a model, first must be defined what will be considered a TP, FP or FN.
According to PASCAL criteria, a detection is considered TP if the IoU between the
object and prediction is higher than 50% and correctly classified, however, if one or both
of these criteria failed, then the prediction is considered FP. If an object did not have
any predictor correctly detecting them, then is considered an FN. If multiple detections
occur for the same object, only one will be counted as TP, the rest being considered FP.

KITTIs evaluation considers in a different way TP for cars1, which the IoU between
the predictor and object must be higher than 70%. KITTIs also consider a TP if a van
is detected as a car, however, we do not follow this rule because we want to only detect
cars and pedestrians.

When we evaluate our models, besides precision and recall, it is also calculated the
localization, background and repetition error using algorithm 1, that is setted with the
KITTIs evaluation benchmark rules, however, when using PASCALs criteria, it must be
changed the algorithm minimum IoU to 50% for all objects.

5.1.2 Dataset Proprieties

Explore the dataset is extremely important due to the information that it contains,
however, to avoid bias towards data, it must be used only the training data. It will be
only analysed cars and pedestrians, since its the aim of this thesis.

To analyse the KITTIs dataset, it will be gathered the following pieces of information:
class balance, object positional and shape distribution, and occlusion balance.

1http://www.cvlibs.net/datasets/kitti/eval_object.php?obj_benchmark=2d

Tomás Sampaio de Freitas Freixo Osório Dissertação de Mestrado

50 5.Data Handling

Algorithm 1 Evaluator Algorithm
Require: Objects; Predictions
1: detected = [False] × len(Objects)
2: n_correct = 0
3: n_missed = 0
4: loc_error = 0
5: bg_error = 0
6: repeated_error = 0
7: for Prediction in Predictions do
8: if Prediction == ’car’ then
9: min_IoU = 0.7

10: else min_IoU = 0.5
11: IoUs = calculate_IoU(Objects, Prediction)
12: max_IoU = max(IoUs)
13: idx_IoU = argmax(IoUs)
14: if max_IOU > 0.1 then
15: if max_IoU > min_IoU then
16: if not detected[idx_IoU] then
17: n_correct += 1
18: detected[idx_IoU] = True
19: else repeated_error += 1
20: else loc_error += 1
21: else bg_error += 1
22: for det in detected do
23: if not det then
24: n_missed += 1
25: TP = n_correct
26: FP = repeated_error + loc_error + bg_error
27: FN = n_missed

Tomás Sampaio de Freitas Freixo Osório Dissertação de Mestrado

5.Data Handling 51

0 5000 10000 15000 20000
number of objects

Car

Pedestrian

Figure 5.1: Class balance, between cars (21707) and pedestrians (4276), of KITTI
Dataset.

Class Balance

Figure 5.1 shows the class balance between cars and pedestrians, where is observable that
exists an imbalance 2 between the classes, which cars represent 83.5% of the total number
of objects. This class imbalance plays a significant role on the performance attainable
by learning methods, which generally assume a uniform distribution of classes.

Object Shape Distribution

Figure 5.2 shows the distribution of the objects shapes, which is observable the difference
between pedestrians and cars, this is due to pedestrians, generally, be narrower than cars.

Since we are using anchors in our framework, would be opportune to use a clustering
algorithm, this way, obtaining better generalization for the priors.

Object Positional Distribution

Figure 5.3 shows the positional distributions of the objects, which perspective is clearly
visible, where the objects fall especially in the centre and borders of the images.

Despite the distribution between cars and pedestrians be quite similar, it is observable
that on the left side appear more cars, yet, on the right side are more pedestrians. Since
Karlsruhe is in Germany and cars drive at the right, its expectable this fact.

Occlusion Balance

The objects occlusion is a determinant factor during the training of the network, since,
high occlusion level will results in a harder feature extraction due to less similarity be-
tween objects.

Figure 5.4 shows the balance of occlusion per class, which majority of the objects
are fully or partially visible, especial among pedestrians. However, a significant portion
of the cars are partially or largely occluded, this might be due to a high overlap, as for
example in parking lots, or traffic queues.

2Class imbalance corresponds to domains where one class is widely represented, and the other only
has a few examples [55].

Tomás Sampaio de Freitas Freixo Osório Dissertação de Mestrado

52 5.Data Handling

5.2 Data Preparation

Before using KITTIs dataset, it is divided in three folders, train, validation and test
set, corresponding to 74%, 14%, 12% of the data, which the test set only was used once

Figure 5.2: Normalized width and height scatter plot of the objects from KITTIs’ dataset.

Figure 5.3: Normalized x and x coordinates scatter plot of the objects centre from
KITTIs’ dataset.

Tomás Sampaio de Freitas Freixo Osório Dissertação de Mestrado

5.Data Handling 53

0 2000 4000 6000 8000 10000
number of objects

Fully Visible
Partly Occluded

Largely Occluded

Car
Pedestrian

Figure 5.4: Number of objects per occlusion level (a) in cars and (b) in pedestrians, on
KITTIs dataset.

per model during evaluation, avoiding bias towards data. Afterwards, data is filtered
reducing unnecessary details from data [32]. For that it is filtered-out the non-important
information from labels, such as, other classes information and objects that do not fit the
hard difficulty set by KITTIs, minimizing possible errors. During training, the images
must be converted from the range between [0, 255] to [0, 1], this is done because using
high input values might affect the activations during training, resulting in a poor models’
performance [81].

5.2.1 Data Augmentation

Data augmentation is a common technique practised in computer vision due to the high
cost of manual labelling new data [67] and by reducing the potential risk of overfitting
the data [46]. The use of data augmentation might even help improve results, as shown
by [47], which reduced the top-1 error rate by over 2% in ImageNet using this technique.
Consequently, many methods were developed for data augmentation such as flips, crops
[58], [47], [122], [125], colour casting [117], blur [2], among others.

During our training we also perform data augmentation, using the following methods:

• Horizontal Flips: with a probability of 50%

• Random Rotation: between the angles [-2.5, +2.5]

• Random Resize Crop: random size crop between [0.1, 1] of the original image
size and a random aspect ratio between [2, 4] of the original aspect ratio.

• Colour Jitter: random variation between [0%, 50%] of brightness, contrast and
saturation and from [0%, 1%] on hue.

Figure 5.5 and Figure 5.6 shows these methods During training, it was used all these
techniques at the same time. When performing these methods, it was also made the
correspondent transformations on the bounding boxes to maintain its coherence. These
methods are performed on-the-fly, reducing unnecessary Random-Access Memory (RAM)
usage, allowing more variate transformations. Data augmentation is only done in the
training set, maintaining the validation set unaltered.

Tomás Sampaio de Freitas Freixo Osório Dissertação de Mestrado

54 5.Data Handling

(a)

(b)

(c)

(d)
colorjitter

Figure 5.5: Augmentation data techniques: (a) original image; (b) flipped image within
vertical axis; (c) random rotation of the image; (d) random crop with a random scale of
the image.

Tomás Sampaio de Freitas Freixo Osório Dissertação de Mestrado

5.Data Handling 55

(a)

(b)

Figure 5.6: Augmentation data techniques: (a) random change in saturation, brightness
and hue of the image; (b) applying all the previously described methods at the same
time.

Tomás Sampaio de Freitas Freixo Osório Dissertação de Mestrado

56 5.Data Handling

Tomás Sampaio de Freitas Freixo Osório Dissertação de Mestrado

Chapter 6

Model Fitting

This chapter is divided into two parts, framework and experiments, first it will be ex-
plained which materials were used, next, it will be explained the experiences made.

6.1 Framework

Before training the models, some aspect must be taken into to account, for instance,
what kind of machine should be used? which programming language? which libraries?
In this section, it will be explored these concepts and why they were used.

6.1.1 Machine

During the 90’s several attempts to create specific hardware to neural networks or to
exploiting existing ones were attempted, but not successfully. In 2000’ the GPUs started
to become cheaper, being widely used for video games, which changed the GPUs market,
being more competitive and bigger, making them cheaper.

GPUs are great at computing matrices and vector multiplications, a requirement to
train ANN, which can speed up learning by a factor of 50 or more. A lot of recent
successes in contests for pattern recognition, image segmentation and object detection,
used ANN trained in GPUs [99].

Since we are training models for computer vision, which contain millions of parameters
with thousands of images, it was needed a computer with some computational power. So,
to train the models it was used the computer with the following specifications: Nvidia
Tesla k40c with 12 Gigabyte (GB) of memory, 32 GB of RAM memory and an Intel
Xeon E5-2640 @2.50Ghz CPU. The CPU is mainly used to pre-process the images and
deploy them on the network, and the RAM memory is specially used to save the networks
progress. The key factor in our computer is the GPU since it will deal with all the training
process of ANN.

6.1.2 Programming Language

Python is a high-level programming language for general-purpose programming and its
explorative nature leads to being widely used for data science, thus contains a large
number of useful libraries developed by its community, making it highly versatile which
is excellent for machine learning [91].

57

58 6.Model Fitting

Python despite not being the fastest language to perform computation-intensive tasks,
many Python libraries, extensively used in Data Science such as NumPy, Pandas and
SciPy have been developed upon lower layer Fortran and C or C++ implementations to
boost its speed [86]. This way we do not need to compromise its speed or computational
power, making Python ideal for our purpose.

6.1.3 Library

Currently are many deep learning libraries that support Python, such as TensorFlow,
Keras, Theano and Pytorch, which are the most used in this field 1. Most of them can
realize the same task with similar performances, but we opt by using Pytorch, which is
the tool of choice for many researchers due too its flexibility and intuitive integration
with Python. It is not considered Theano since is no longer supported, which could lead
to many problems. It is also rejected the hypothesis of using Keras because it runs on top
of TensorFlow which could give less flexibility in the experiments. Despite TensorFlow
being highly used in this field, it is too low-level to use comfortably for rapid prototyping,
being mainly used at a production level.

Pytorch supports reverse-mode [103] and automatic differentiation [39] of scalar func-
tions as most of the deep learning libraries. But it distinguishes by some features, such
as [80]:

• Dynamic, define-by-run execution: Generally, deep learning libraries use static
graph structure, this differentiates symbolically ahead of time and then are run
many times. Instead, Pytorch uses a dynamic framework which defines the function
to be differentiated simply by running the desired computation.

• Immediate, eager execution: This will allow the framework to run tensor com-
putations as it encounters them, enabling the execution of the CPU and GPU to
be pipelined.

• No Tape: It enables the users to mix and match independent graphs how they
want, without explicit synchronization. This makes possible when a graph or a
portion of a graph becomes dead it to be automatically freed, making it possible
to free the memory as quickly as possible for other tasks.

• Core logic in C++: Majority of Pytorch is written in C++, which makes possible
to achieve much lower overhead compared to other frameworks.

• Extensions: It is possible in Pytorch to create custom differentiable operations
by specifying the forward, which computes the operations, and backward func-
tions, which extends the vector-Jacobian product. This allows the usage of Python
libraries, making them differentiable.

• Memory management: Pytorch is essentially used for machine learning model on
GPU, being the low GPU memory capacity one of the biggest limitations, Pytorch
frees memory as soon as they became unneeded in order to combat this issue.

1Information obtained from: https://github.com/thedataincubator/data-science-
blogs/blob/master/output/DL_libraries_final_Rankings.csv

Tomás Sampaio de Freitas Freixo Osório Dissertação de Mestrado

6.Model Fitting 59

Anchor Width Height
nº
1 36 37
2 366 174
3 115 59
4 162 87
5 38 90
6 258 173
7 224 108
8 78 170
9 72 43

Table 6.1: Width and height defined in pixel for anchors sizes for object detection using
KITTI dataset.

These points make Pytorch an ideal library to be chosen for our research, and that why
we use it.

6.1.4 Programming the loss function

As was said in the section 6.1.1 and 6.1.3, GPU is what boosts the training of ANNs due
to its efficiency on computing matrices and vector multiplications. For these reasons, it is
important to do all computations using matrices to not create unwanted bottlenecks. So,
during training all the calculations needed for the loss function should be made through
matrices or inherent calculations, allowing to take full advantage of the GPU.

6.1.5 Training Hyper-Parameters

During the experiments, we want to maintain our models as similar as possible, this
way it is observable what the tweaks made in their performances. For that reason, the
hyper-parameter were maintained through the experiments.

As the optimization algorithm, it is used the SGD with a starting learning rate of
0.01, a momentum of 0.9 and weight decay of 0.005. It is also used a learning scheduler,
that will change the learning with the pass of epochs, which every 60 epochs it multiply
the learning rate by a factor of 0.25. It was used a batch size of 20 2. To be sure that our
models trained to his maximum performance, they trained for 300 epochs 3. The values
that will be used for the anchors are presented in table 6.1, which are the same used in
SqueezeDet [116] for detecting pedestrians, cars and cyclists.

2Batch size is the number of images, in this case, that will be trained at the same time.
3An epoch is when the full training set passed through the network during the training phase.

Tomás Sampaio de Freitas Freixo Osório Dissertação de Mestrado

60 6.Model Fitting

6.2 Experiments

This section describes the experiments that will be performed.

6.2.1 Vanilla Version

Vanilla Version consists of the control version, which will be trained according to the
previous chapters. As result, it is expected a nice performance but nothing extraordinary,
since it is not performed any special enhancement.

6.2.2 No Augmentation Data

In this experiment, it is opted by not using any technique of augmentation data, showing
problem of using small datasets and the influence that these techniques have on the
models’ performance. Accordingly, the performance is expected to substantially lower
when comparing it to the Vanilla Version.

6.2.3 Batch Normalization

Batch Normalization will be integrated with architecture for this experiment, making
possible to remove the previous regularization methods, dropout. Since in YOLO the
usage of batch normalization boosted its mAP over 2%, it is also expected some increase
in the resulting performance of this experiment.

6.2.4 Focal Loss

In object detection one of the most significant problems described by [64] is the extreme
foreground-background class imbalance during training. So they formulate a loss function
that focuses on hard examples and down-weights the contribution of easy examples, they
call this loss the Focal Loss (in the section 3.3.4 it is explained how the focal loss works).
To see what improvements could be achieved by using the Focal Loss, it was integrated
it into the vanilla cost function in this experiment.

Integrating focal loss in the loss, it expectable a major improvement from the net-
work’s performance, since RetinaNet was able to outperform other object detectors es-
pecially due to this tweak.

6.2.5 Matching Strategy

In Vanilla version, a label will only be allocated to an anchor if this anchor has the biggest
IoU among all (the IoU is calculated between the anchor and label). However, SSD does
a different approach, associating a label to any anchor that obtains a IoU higher or equal
than 50%. This strategy will probably result in higher performance.

6.2.6 No transfer Learning

This experiment will train the network from scratch, initializing the layers weights and
bias through a uniform distribution, which probably will result in a poor performance.
This way, proving that the use of transfer learning is necessary for an optimal result.

Tomás Sampaio de Freitas Freixo Osório Dissertação de Mestrado

6.Model Fitting 61

(a) (b)

(c) (d)

Figure 6.1: Different representation of data: (a) Original data plotted in 2-dimensional
graph; (b) Normalization of the original data, by min-max scaling shift and rescale; (c)
Usage of the process data represented in (b) and zero-centred by subtracting mean in
each dimension. The data is now centred around the origin; (d) Normalize and centre
the data according to the previous steps plus standardizing by dividing the standard
deviation of the data by each dimension.

6.2.7 Frozen layers

Frozen layer is a technique commonly used when training networks on the same task
but with different data. So, it be will frozen the layers that are common between both
architectures, only training the newly added. This change will result in a faster training
since it has fewer weights to update, however probably will perform worse that fine-tune
all the layers.

6.2.8 Data Standardization

In Vanilla model training, the input data is normalized according to min-max scaling.
Min-max scaling shifts and rescales the values, so that they be between [0, 1], instead
of the original interval [0, 255]. However,standardization consists of first subtracting
the mean values and then divide them by its standard deviation. In Figure 6.1 its
represented these transformations. In this experiment the input data will be normalized
and then standardized. We believe that this process could make small improvements to
the network performance.

Tomás Sampaio de Freitas Freixo Osório Dissertação de Mestrado

62 6.Model Fitting

Anchor Width Height
nº
1 109 58
2 276 156
3 78 175
4 36 36
5 212 108
6 378 184
7 36 94
8 70 44
9 155 81

Table 6.2: Width and height defined in pixel for anchors sizes for object detection using
KITTI dataset and k -means Cluster.

Figure 6.2: k -means cluster with k equal to 9, using the normalized aspect ratios from
KITTIs training data; the stars represent the centre of each cluster.

6.2.9 k-means Cluster getting the anchors

Object detectors generally use priors, or anchors, to improve their performance. Since
we only want to detect car and pedestrians, a good way to obtain these anchors is to
cluster the most common width and height of these classes. For that, it is used a k-means
cluster algorithm that computed 9 clusters (Table 6.2), which are shown in Figure 6.2.
These anchors should have the optimal size to detect these classes, which will probably
improve the network performance.

Tomás Sampaio de Freitas Freixo Osório Dissertação de Mestrado

6.Model Fitting 63

0.00 0.25 0.50 0.75 1.00
IoU

1.0

1.5

2.0

2.5

3.0
λ

Figure 6.3: Graphic of λ in function to IoU.

6.2.10 λ in function of IoU

To try to improve the results from Vanilla Version, we formulated a dynamic balance
variable λ that will be multiplied by the positional and confidence loss. The idea of this
variable is to increase the weight of the predictors that achieved a low IoU and decrease
the others ones. This way, optimizing the localization of the predictors, improving the
overall network’s performance. This variable λ can be defined by:

λ(IoU) = exp(1− IoU). (6.1)

Figure 6.3 shows its graphical representation.

6.2.11 Lower Input

This experiment will decrease the size of each image (375 × 375) that is used to train.
This will increase the speed of the model during inference time and decrease the training
time, however, it is expectable a lower precision.

6.3 Other Trained Models

To compare the experiments other models were trained. This will allows to compare the
results of the experiments with these models using the same evaluation tools. For this,it
was opted to train two frameworks, SSD, which is a one-stage detector like ours, and
Faster R-CNN which is state-of-the-art of the Two-Stage Detectors. These models will
use previously trained weights on COCOs dataset [64].

6.3.1 SSD: MobileNet v1

MobileNet [48] is an architecture that was built for mobiles and embedded vision ap-
plication. For that, MobileNet uses a streamlined architecture which uses depth-wise
separable convolution. This way, they were able to build an architecture with a smaller
number of parameters, similar to SqueezeNet. This architecture is generally used for
classification.

Tomás Sampaio de Freitas Freixo Osório Dissertação de Mestrado

64 6.Model Fitting

Fusing MobileNet with SSD framework was possible to obtain 33.3 FPS and a mAP
of 21 % on COCO [64]. This model is the biggest "rival" to our framework since both
architectures have approximately the same size.

6.3.2 SSD: Inception v2

Inception v2 [110] was an architecture that the main goal was to explore ways to use
the computational cost as efficiently as possible, while still scaling up the network. For
that, they factorized convolutions and used aggressive regularization techniques. This
way they were able to surpass other states-of-the-art architectures.

Since Inception architecture is computationally efficient, this architecture is a good
alternative to be used with SSD framework. This allowed SSD: Inception v2 to achieve
23.8 FPS with a mAP of 24% on COCO [64].

6.3.3 Faster R-CNN: Inception v2

As explained in Chapter 3, Faster R-CNN used a different path to detect object com-
paring to SSD and our framework, which are One-Stage Detectors. Due to this fact, it
would be also interesting to compare their results with our experiments. Fusing Faster
R-CNN with Inception v2 was possible to achieve 17.2 FPS, which is still considerably
high, obtaining 28 % mAP on COCO [64].

6.3.4 Faster R-CNN: ResNet

ResNet [45] uses a residual learning framework, which makes easier the training process
comparing to other deep networks. For that, they "reformulate the layers as learning
residual function with reference to the layer inputs, instead of learning unreferenced func-
tions". With this modification, they gained a considerable accuracy with the increase of
depth.

To push further our comparisons and to observe better what generally happens when
we increase the depth of a model, we also train two different versions of the Faster R-CNN
system with this architecture. One with ResNet 50 we were able to obtain 11.2 FPS and
30 % mAP, and with ResNet 101 achieved 9.4 FPS and 32 % mAP on COCO [64].

6.3.5 Faster R-CNN: Inception ResNet v2

Recently, using a conjunction of ResNet and other more traditional architectures had
improved substantially its performance. So, in [108] they associated ResNet and Inception
v2, with this, they were able to obtain high accuracies. Using this fusion with Faster
R-CNN framework achieves 1.6 FPS and 37 % mAP on COCO [64].

Tomás Sampaio de Freitas Freixo Osório Dissertação de Mestrado

Chapter 7

Results and Discussion

After training the experiments described in subsections 6.2 and 6.3, it was performed
a evaluation using Algorithm 1. This evaluation used 945 orignal images previously
separated from the KITTIs dataset. With the results, it was then performed a comparison
between the models’ performances. At the end, it will be shown the biggest problems
that the models faced.

7.1 Performance Testing

The frameworks were trained to detect two classes, cars and pedestrians, so it will be
first evaluated the cars then the pedestrians and finally it will be shown the results of
both detections at the same time. The evaluation will use two similar methods. First, it
will be evaluated using KITTIs methodology an then the more commonly used PASCAL
methodology.

To compare the results it is used a precision-recall curve and the mAP, which was
considered as the optimal point where the maximum number of objects was detected
with the maximum precision (mAP ' mAR). The precision-recall curves have in solid
lines represented the tweaked version (subsection 6.2), in dashed lines the other trained
frameworks (subsection 6.3) and in dashed-dot line the Vanilla Version.

The following subsections will present Tables regarding the optimal points of the
versions that were more interesting, however, Appendix ?? contains Tables with all the
optimal points for each version. To better understand the Tables and Figures that will
be presented its provided Table A.1 which contains the used model names and their
references.

7.1.1 Detecting Cars

The Average precision-recall curve for detecting cars using KITTIs evaluation method can
be observed in Figure 7.1. The majority of the tweaked versions (#1.-) performed worse
than the control version #1.1, except for two tweak models, #1.4 and #1.5, which had
far better results than the others. However, the main problem in our models was the
localization error, Table 7.2, being as high as 44.3% in the control version. Nonetheless,
the best performance achieved an Average Precision (AP) of 46.2% (experiment #1.5).

65

66 7.Results and Discussion

Approach Reference
Name

Vanilla Version #1.1
No Augmentation Data #1.2
Batch Normalization #1.3

Focal Loss #1.4
Matching Strategy #1.5
No transfer Learning #1.6

Frozen layers #1.7
Data Standardization #1.8

k -means Cluster getting the anchors #1.9
λ in function of IoU #1.10

Lower Input #1.11
SSD: MobileNet v1 #2.1
SSD: Inception v2 #2.2

Faster R-CNN: Inception v2 #3.1
Faster R-CNN: ResNet 50 #3.2
Faster R-CNN: ResNet 101 #3.3

Faster R-CNN: Inception ResNet v2 #3.4

Table 7.1: Models version reference.

Ref AP AR Localization Background Repetition Optimal
Error Error Error Confidence

#1.1 43.4% 43.8% 41.3% 15.3% 0.0% 74%
#1.4 40.8% 41.5% 44.3% 14.9% 0.0% 73%
#1.5 46.2% 46.8% 37.8% 16.0% 0.0% 73%
#2.1 49.6% 49.7% 28.9% 21.5% 0.0% 22%
#2.2 59.6% 59.7% 19.2% 21.2% 0.0% 39%
#3.4 77.1% 77.4% 3.9% 18.9% 0.0% 98%

Table 7.2: Results obtained from detecting car in the optimal point, using KITTIs eval-
uation method.

Tomás Sampaio de Freitas Freixo Osório Dissertação de Mestrado

7.Results and Discussion 67

Ref AP AR Localization Background Repetition Optimal
Error Error Error Confidence

#1.1 69.5% 70.1% 13.5% 15.3% 1.7% 74%
#1.4 68.9% 70.0% 14.6% 14.9% 1.6% 73%
#1.5 70.6% 71.5% 12.3% 16.0% 1.1% 73%
#2.1 67.6% 67.8% 10.9% 21.5% 0.0% 22%
#2.2 70.9% 71.0% 7.7% 21.2% 0.1% 39%
#3.4 77.8% 78.1% 3.3% 18.9% 0.0% 98%

Table 7.3: Results obtained from detecting car in the optimal point, using PASCALs
evaluation method.

The models trained afterwards had far better results than ours. Especially when
using Faster R-CNN method (#3.-), however, they all obtained similar performances,
which the highest performance was achieved by model #3.4 with 77.1% AP, Table 7.2.
SSD models (#2.-) had far different performances, this is due to the used architecture,
achieving 49.6% AP with model #2.1 and 59.6% AP with model #2.2, both performing
better than our experiments.

0% 15% 30% 45% 60% 75% 90%
Average Recall

0%

15%

30%

45%

60%

75%

90%

A
ve
ra
ge

P
re
ci
si
on

#1.1
#1.2
#1.3

#1.4
#1.5
#1.6

#1.7
#1.8
#1.9

#1.10
#1.11
#2.1

#2.2
#3.1
#3.2

#3.3
#3.4

Figure 7.1: Average Precision-Recall curve for detecting Cars using KITTIs evaluation
method, where * is referent to the optimal point.

Tomás Sampaio de Freitas Freixo Osório Dissertação de Mestrado

68 7.Results and Discussion

0% 15% 30% 45% 60% 75% 90%
Average Recall

0%

15%

30%

45%

60%

75%

90%

A
ve
ra
ge

P
re
ci
si
on

#1.1
#1.2
#1.3

#1.4
#1.5
#1.6

#1.7
#1.8
#1.9

#1.10
#1.11
#2.1

#2.2
#3.1
#3.2

#3.3
#3.4

Figure 7.2: Mean Average Precision-Recall curve for detecting cars using KITTIs evalu-
ation method, where * is referent to the optimal point.

Using PASCAL evaluation method, the results were, as expected, higher than using
KITTIs method (Figure 7.2 and Table 7.3). Using this evaluation method, our top three
models (#1.1, #1.4 and #1.5) achieved higher AP than model #2.1, and the best
experiment (#1.5), achieved 70.6 AP almost surpassing both SSD models (#2.-), in
which model #2.2 achieved 70.9%, only 0.3 % higher than ours. This is due to the
decrease of the localization error, however, the repetition error increased. Yet, Faster
R-CNN model achieved, again, higher performances than ours, which their best AP was
77.8% by model #3.4.

7.1.2 Detecting Pedestrians

KITTI and PASCAL evaluation methods used for detecting pedestrians are identical
since both require an IoU of 50% or higher between the prediction and the pedestrian.
Figure 7.3 and Table 7.4, contains the obtained results.

When detecting pedestrians, once more, Faster R-CNN models (#3.-) performed
far better than any other tested detector, achieving up to 73.6% AP by model #3.4.
However, the best result from our experiments (#1.5) achieved a similar performance
to #2.1, obtaining 40.5% AP, only 0.2% less. The other experiments (#1.-) achieved a
lower AP. The other SSD model, #2.2, had a far better performance than the experi-

Tomás Sampaio de Freitas Freixo Osório Dissertação de Mestrado

7.Results and Discussion 69

0% 15% 30% 45% 60% 75% 90%
Average Recall

0%

15%

30%

45%

60%

75%

90%

A
ve
ra
ge

P
re
ci
si
on

#1.1
#1.2
#1.3

#1.4
#1.5
#1.6

#1.7
#1.8
#1.9

#1.10
#1.11
#2.1

#2.2
#3.1
#3.2

#3.3
#3.4

Figure 7.3: Average Precision-Recall curve for detecting pedestrians, where * is referent
to the optimal point.

ments made, achieving at least more 5% AP.

7.1.3 Detecting Objects

The aim of this thesis is to detect cars and pedestrians, so this subsection is presented
the joined results.

The Mean Average Precision-Recall curve for detecting cars and pedestrians using
KITTIs evaluation method is shown in Figure 7.4. The experiment #1.5 was clearly
the best-tweaked model, achieving 43.2% mAP (Table 7.5), which the biggest problem
was the localization error. However, the other also tested frameworks, Faster R-CNN
and SSD, obtained far better performances, where #3.4 achieved 76.6 mAP, the highest
result among all, obtaining far less localization error.

The high localization error that we got might have happened because the initially
weights used were previously trained to be a classifier. However, the other framework,
R-CNN and SSD, used weights that were previously trained in COCOs dataset, which
is an object detection dataset with 90 classes, including persons and cars. Anyway, the
best experiment only performed 2% worse than #2.1 model, which uses an architecture
that is the closest to ours.

In Figure 7.5 and Table 7.6 it was used the PASCAL evaluation method, where the

Tomás Sampaio de Freitas Freixo Osório Dissertação de Mestrado

70 7.Results and Discussion

Ref AP AR Localization Background Repetition Optimal
Error Error Error Confidence

#1.1 37.1% 37.6% 33.8% 27.8% 1.2% 68%
#1.4 38.6% 38.6% 30.5% 30.1% 0.8% 65%
#1.5 40.5% 40.7% 29.3% 29.5% 0.6% 70%
#1.7 35.6% 35.1% 35.4% 25.2% 3.8% 68%
#2.1 40.7% 40.7% 23.2% 35.7% 0.4% 4%
#2.2 45.5% 47.0% 21.7% 32.2% 0.6% 3%
#3.4 84.7% 72.9% 3.4% 11.9% 0.0% 34%

Table 7.4: Results obtained from detecting pedestrians in the optimal point.

Ref mAP mAR Localization Background Repetition Optimal
Error Error Error Confidence

#1.1 40.3% 39.7% 36.3% 23.0% 0.5% 72%
#1.4 39.8% 39.5% 37.1% 22.7% 0.4% 68%
#1.5 43.2% 43.9% 33.5% 23.1% 0.2% 71%
#2.1 45.2% 45.0% 26.5% 28.1% 0.2% 6%
#2.2 54.0% 53.8% 20.9% 24.8% 0.2% 6%
#3.4 76.6% 76.5% 5.0% 18.4% 0.0% 11%

Table 7.5: Results obtained from detecting car and pedestrians in the optimal point,
using KITTIs evaluation method.

Ref mAP mAR Localization Background Repetition Optimal
Error Error Error Confidence

#1.1 52.8% 53.9% 22.9% 23.0% 1.4% 72%
#1.4 54.1% 54.5% 23.1% 21.4% 1.3% 69%
#1.5 57.4% 55.7% 20.5% 21.3% 0.8% 72%
#2.1 54.7% 54.4% 17.6% 27.4% 0.3% 7%
#2.2 59.5% 59.9% 15.3% 24.8% 0.4% 6%
#3.4 77.1% 77.0% 4.5% 18.4% 0.0% 11%

Table 7.6: Results obtained from detecting car and pedestrians in the optimal point,
using PASCALs evaluation method.

Tomás Sampaio de Freitas Freixo Osório Dissertação de Mestrado

7.Results and Discussion 71

0% 15% 30% 45% 60% 75% 90%
Mean Average Recall

0%

15%

30%

45%

60%

75%

90%

M
ea
n
A
ve
ra
ge

P
re
ci
si
on

#1.1
#1.2
#1.3

#1.4
#1.5
#1.6

#1.7
#1.8
#1.9

#1.10
#1.11
#2.1

#2.2
#3.1
#3.2

#3.3
#3.4

Figure 7.4: Mean Average Precision-Recall curve for detecting cars and pedestrians using
KITTIs evaluation method, where * is referent to the optimal point.

best experiments (#1.1 and #1.5) reached or even surpassed the mAP gotten by #2.1,
reaching a maximum of 57.4 % mAP by #1.5. Even #2.2 model, which uses a much
deeper architecture, only obtained more 1.9% mAP. However, Faster R-CNN models,
#3.-, achieved far higher precisions, surpassing up to 20% the best experiment, being
the best models in terms of mAP and mAR.

7.1.4 System Performance

Object detectors implemented on self-driving cars must be able to work at high FPS
while spending a low amount of GPU memory and disk space, this way not consuming
all the hardware resources. So, during the experiments these parameters were tracked,
as shown in Table 7.7. However, due to some incompatibilities with the GPU, which
were caused by using an out-of-date CUDA 1 version, it was not possible to test Faster
R-CNN performance.

During inference, our experiments achieved 46 FPS using the full image as input and
111 FPS using an image input of 375× 375 pixel. However, SSD models that are known
to be fast were only able to achieve between 5-6 FPS using this hardware, instead of the

1CUDA is a parallel computing platform and programming model developed by NVIDIA for general
computing on GPUs.

Tomás Sampaio de Freitas Freixo Osório Dissertação de Mestrado

72 7.Results and Discussion

0% 15% 30% 45% 60% 75% 90%
Mean Average Recall

0%

15%

30%

45%

60%

75%

90%

M
ea
n
A
ve
ra
ge

P
re
ci
si
on

#1.1
#1.2
#1.3

#1.4
#1.5
#1.6

#1.7
#1.8
#1.9

#1.10
#1.11
#2.1

#2.2
#3.1
#3.2

#3.3
#3.4

Figure 7.5: Mean Average Precision-Recall curve for detecting cars and pedestrians using
PASCAL evaluation method, where * is referent to the optimal point.

23-33 FPS stated by the repository 2, which is not viable for a self-driving car. Since
Faster R-CNN are slower than SSD framework, it was assumed that their frame rate
is even lower, therefore, with respect to the frame rate, our framework is the only one
viable for a self-driving car comparing to the other trained models.

When observing the memory needed by each model, ours are also the ones that spend
less disk space, being at least 9 times smaller than any other trained framework. When
analysing the GPU memory spend during inference time, we used 715 Megabyte (Mb)
with our biggest models, a relatively small amount. Unfortunately, it was not possible to
obtain the memory used by SSD frameworks due to the library used in its implementation.

7.1.5 Overall Performance

After analysing the previous results, we saw that the used evaluator has a huge impact
on the measurement of mAP and mAR, as expected. If the minimum acceptable IoU is
diminished to be a TP, then the localization error will decrease and the repetition error
increases.

The majority of the experiments performed resulted in a lower performance, this will
now be analysed.

2https://github.com/tensorflow/models/blob/master/research/object_detection/g3doc/detection_model_zoo.md

Tomás Sampaio de Freitas Freixo Osório Dissertação de Mestrado

7.Results and Discussion 73

Ref FPS GPU Disk Space needed
Memory (Mb) Memory (Mb)

#1.5 46 715 8.1
#1.11 111 445 8.1
#2.1 6 - 71.3
#2.2 5 - 165.7
#3.1 - - 164.7
#3.2 - - 410.0
#3.3 - - 639.9
#3.4 - - 634.3
#4 - - 730.7

Table 7.7: Frame rate and memory needed for each tested system.

Version #1.2, in which was not performed data augmentation, did not obtain any
viable results, this was expectable due to the CNNs being eager for data, proving once
more, that data augmentation is extremely important to train CNNs.

Implementing batch normalization on SqueezeNet (Version #1.3) got a lower mAP
then the control version (#1.1). This might have happened because it was implemented
the batch normalization in the pre-trained network, and its weights did not suppose
this change. Furthermore, it was also modified the task and dataset, which might have
compromised the network’s performance even more.

As expected, when it was not performed a transfer learning technique (version
#1.6), the results were far worse than the control version. However, the technique
Frozen Layers (version #1.7) trained much faster and used far less GPU memory dur-
ing this phase than other experiments. This could be a good technique to be used when
the GPUs memory.

In version #1.8 it was performed a standardization to the data in order to help the
learning task, but instead, the results were worse than without standardizing it. This
might have happened because the used weights from SqueezeNet were not trained using
this method, so instead, the learning task was more difficult.

Anchors plays a major roll in object detectors results, so we acquired our own using a
k-cluster version #1.9), however, the performance was far worse than using the typical
KITTIs anchors, which might have happened due to an extracting of the wrong features.

With the intent of thinking out-of-the-box, we tried to implement a dynamic balance
variable λ in the loss function (version #1.10). However, it did not provide any gains,
this might happened due its multiplication factor be too low. We believe that if we had
used an approach similar to the Focal Loss, but applying it to the IoU, we might have
been successful.

In the last experiment (version #1.11) which uses a smaller input data size it was
obtained a lower precision as expected, however, due to having fewer parameters than
the other networks, it trained faster and obtained higher FPS.

The best three versions (versions #1.1, #1.4 and #1.5) surpassed all other
tweaked models by at least 5% mAP. Experiment #1.5, due to its tweak, was able
to train more predictors at the same time, allowing to achieve the best result amongst all
tweaked versions. Experiment #1.4 also obtained great results, especially in detecting

Tomás Sampaio de Freitas Freixo Osório Dissertação de Mestrado

74 7.Results and Discussion

Model FPS mAP
MV3D [14] 2.22 79.54%

SubCNN [119] 0.5 79.2%
3DOP [13] 0.33 79.10%

Mono3D [12] 0.24 78.96%
SDP + RPN [89] [89] 2.5 78.38%
MV3D (LIDAR) [14] 3.33 78.16%

SINet VGG [50] 0.5 77.75%
Deep3DBox [73] 0.66 77.17%
SqueezeDet [116] 57.2 76.7%

#3.4 - 76.6%
SDP+CRF (ft) [120] 1.66 71.13%
Faster R-CNN [89] 0.5 71.12%

MS-CNN [9] 2.5 76.11%
Reinspect [105] 0.5 66.23%
3DVP [118] 0,03 65.38%

AOG [63] [116] 0.33 60.70%
spLBP [49] 0.66 60.59%
SubCat [76] 1.4 59.71%

#2.2 5 54.0%
YOLO 9000 [88] 33 50.25%

#2.1 6 45.3%
#1.5 46 43.2%

YOLO [87] 33 29.25%

Table 7.8: Result from various systems tested on KITTI dataset.

pedestrians due to the focal loss implementation, which focused on the hard examples
and down-weighted the contribution of easy examples during training. We think that,
probably, the joint of both versions may improve the object detector, resulting in an even
better model.

To compare the best experiment (version #1.5) with other frameworks trained on
KITTIs dataset, it is introduced the Table 7.8. The evaluations performed by the other
models are from detecting cars, pedestrians and cyclists.

As said before, a self-driving car needs an object detector that can provide high frame
rates, otherwise, it will not react in time to unexpected events. So, despite the majority
of models in Table 7.8 present higher mAP than the other models, they performed at
low frame rates, making them unviable to be implemented in a self-driving car. The
models #2.- can also be excluded, since they performed at low FPS using the available
hardware. Now looking at YOLO, this framework can achieve high speeds, however, the
mAP is much lower than the obtained with our models, which is not beneficial.

The best results to be implemented in a self-driving car were obtain by YOLO 9000,
our model (#1.5) and SqueezeDet, since they are real-time object detectors with a
considerably high mAP. However, the achieved mAP was very different, the YOLO 9000
reached to 50.25% and SqueezeDet gotten 76.7%. We obtained 43.2% mAP, but we
did not count the detected vans as a TP for the evaluation of our model, which might

Tomás Sampaio de Freitas Freixo Osório Dissertação de Mestrado

7.Results and Discussion 75

Figure 7.6: Prediction of an KITTI test image, which wrongfully classified an cyclist as
pedestrian.

decrease the resulted mAP.
SqueezeDet got a much higher mAP than the other models, however, the authors

do not say how the evaluation was made. As other researchers [21] tried to reproduce
SqueezeDet results and achieved far lower result, so we excluded this model from the
comparison.

YOLO 9000 can reach a better mAP than our model, however, we can perform at high
FPS, which could be important in a real-world scenario, but both are a viable solutions,
depending on the trade-off that we prefer.

7.2 Predictions Visualization

This section presents some predictions that our best experiment (version #1.5) made,
it is also shown some problems that made the mAP and mAR not being higher. The
predictions analysed are made from the test dataset images.

As we can observe in Figure 7.6 and Figure 7.7, a common error that our system makes
is in predicting that cyclists are pedestrians, this is probably due to the feature similarity
between both classes. However, this not a desirable result and affects the mAP, increasing
the background error. This also happens with vans which are wrongfully classified as cars
(Figure 7.11), however, KITTIs considers this error a TP, but we do not.

Another factor that lowers the mAP was the missed or wrongfully labelled objects
that some images contain, as shown in Figure 7.8 or in Figure 7.9. This will affect not
only the evaluation of our model, increasing the localization and background error, but
also our training, that could have been misleading.

During inference time, our model struggled to detect objects that overlapped with
each other, as for example in parking lots. Since NMS discard predictors that overlap
more than 50%, when two object overlap in similar or higher levels, we do not detect
them, as Figure 7.10 shows, decreasing our mAR.

Tomás Sampaio de Freitas Freixo Osório Dissertação de Mestrado

76 7.Results and Discussion

Figure 7.7: Prediction of an KITTI test image,which wrongfully classified an cyclist as
pedestrian and detecting a hardly visible car.

Figure 7.8: Prediction of an KITTI test image, which did not a cars GT.

Tomás Sampaio de Freitas Freixo Osório Dissertação de Mestrado

7.Results and Discussion 77

Figure 7.9: Prediction of an KITTI test image, wrong label on a Van.

Figure 7.10: Prediction of an KITTI test image, overlapping of cars in a parking lot.

Figure 7.11: Prediction of an KITTI test image, miss classifying vans as cars.

Tomás Sampaio de Freitas Freixo Osório Dissertação de Mestrado

78 7.Results and Discussion

Tomás Sampaio de Freitas Freixo Osório Dissertação de Mestrado

Chapter 8

Conclusions

This chapter will contain a review of the obtained results and some concluding remarks.
It is also explored some potential improvements that could be made to our system.

8.1 Theory

This thesis begun with a review of the theoretical background, explaining how ANNs
work. Then it was described how CNN deal with the data and why are more effective in
performing with images than classic ANNs.

Next, it was explored different ways to create an object detector, which had evolved
from slower frameworks, using classic machine learning methods, as Viola and Jones [114]
did it. Afterwards, R-CNN and Faster R-CNN appeared, which boosted object detection
to a new level. These frameworks were able to achieve at the time impressive perfor-
mances, however, the speed that they achieved was relatively low. Then appeared the
One-Stage Detectors. Their main focus was to perform at high speeds, yet maintaining
a considerable high accuracy.

Through time, One-Stage Detectors have evolved, becoming faster and more accurate,
but generally they need the cutting edge hardware. So, we built our framework, inspired
by these detectors, but trying to reduce the computational overload.

Since we built our system from scratch, one of the biggest difficulties was the infor-
mation on how to do it, because the majority of the papers only explained the high-level
concepts of their frameworks. However, looking through the code it was possible to
recreate some parts of these detectors.

During the development of this thesis, it was learned that when building One-Stage
Detectors there are two main parts: (1) the formulation of the loss function and (2) how
to provide ground truth to our system.

8.2 Practice

During the creation of the framework, it was learned that the most challenging part is
to implement the training phase. This is specially due to the implementation of the
loss function, which is extremely difficult because it has to make all the operation using
matrices to obtain full potential of the GPU. The GT is also extremely difficult due
to all the transformations that are needed to made, using also matrices operations to

79

80 8.Conclusions

minimize possible bottlenecks. If it is made a mistake in the calculation during one of
these steps is very difficult to debug it, due to the networks black-box effect and to the
long training time. We overcame some of these problems using just one image during
train and overfitting it, in order to diminish substantially the training time and made
the debugging easier, but does not always work.

To training our models, we also must not forget to convert correctly our prediction to
viable bounding boxes and pass them through a non-maximum suppression algorithm.
Since the main goal is to obtain high speeds, these decoders and algorithms we must be
implemented using matrices operation avoiding, as much as possible, bottlenecks.

When exploring already built object detectors we realized that most of them were
straight out-of-the-box implementation and we would only need to provide the data with
the correct labels and start training. However, these repositories generally are coded
with multiple dependencies, which makes them hard to perform different experiments.

8.3 Results

The results obtained were promising since we were able to achieve high speeds (46 FPS),
and still obtain a remarkable precision, 43.2% using KITTIs evaluation method. Even
when comparing with other detectors as YOLO or SSD, we achieved a competitive frame-
work. However, our models especially struggled to find the "exact" object localization,
this being the biggest error that we found during our best model’s evaluation.

During the experiments, the majority of the tweaks performed in the control version
resulted in a decrease of precision, which in some cases was quite surprising, such as
when we implemented a version with batch normalization or obtaining different anchors
using a k -means cluster.

8.4 Future Work

One-Stage Detectors still have a lot of room to evolve and many experiments could be
done. Even using a small model, such as we did, it is possible to obtain good results. As
further work we would like to proceed in four different ways. Firstly, a study of the impact
of hyper-parameters in the same model, in order to understand the impact of different
elements during the training phase. Another interesting path would be modifying our loss
function to decrease the localization error, building a loss that takes into account the IoU
between the predictor and the ground truth. Despite our unsuccessful experiment, we
believe that this would make a huge impact on the network performance. Another path
would be performing multitasking learning using our framework and reusing its weights
to perform a completely different task, as for example segmenting the road. Finally, we
also suggest the implementation of this framework in ATLASCAR 2, as we think it would
be an helpful contribute to its development.

Tomás Sampaio de Freitas Freixo Osório Dissertação de Mestrado

Bibliography

[1] Amir Ahmad and Lipika Dey. A k-mean clustering algorithm for mixed numeric
and categorical data. Data & Knowledge Engineering, 63(2):503–527, nov 2007.

[2] Timo Ahonen, Esa Rahtu, Ville Ojansivu, and Janne Heikkila. Recognition of
blurred faces using Local Phase Quantization. In 2008 19th International Confer-
ence on Pattern Recognition, pages 1–4, 2008.

[3] Imanol Bilbao and Javier Bilbao. Overfitting problem and the over-training in
the era of data: Particularly for Artificial Neural Networks. In 2017 Eighth Inter-
national Conference on Intelligent Computing and Information Systems (ICICIS),
number Icicis, pages 173–177. IEEE, dec 2017.

[4] Christopher M. Bishop. Pattern Recognition and Machine Learning. Springer,
2006.

[5] Mariusz Bojarski, Davide Del Testa, Daniel Dworakowski, Bernhard Firner, Beat
Flepp, Prasoon Goyal, Lawrence D. Jackel, Mathew Monfort, Urs Muller, Jiakai
Zhang, Xin Zhang, Jake Zhao, and Karol Zieba. End to End Learning for Self-
Driving Cars. pages 1–9, apr 2016.

[6] Philip Brey. The strategic role of technology in a good society. Technology in
Society, pages 1–7, 2016.

[7] Nikhil Buduma. Fundamentals of Deep Learning : Designing Next-Generation
Machine Intelligence Algorithms. O’Reilly Media, 2017.

[8] Samuel Rota Bulo, Gerhard Neuhold, and Peter Kontschieder. Loss Max-Pooling
for Semantic Image Segmentation. In 2017 IEEE Conference on Computer Vision
and Pattern Recognition (CVPR), pages 7082–7091. IEEE, jul 2017.

[9] Zhaowei Cai, Quanfu Fan, Rogerio S. Feris, and Nuno Vasconcelos. A Unified
Multi-scale Deep Convolutional Neural Network for Fast Object Detection. In
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), volume 9908 LNCS, pages 354–
370. jul 2016.

[10] Weipeng Cao, Xizhao Wang, Zhong Ming, and Jinzhu Gao. A review on neural
networks with random weights. Neurocomputing, 275:278–287, 2018.

[11] Joao Carreira and Cristian Sminchisescu. CPMC: Automatic Object Segmentation
Using Constrained Parametric Min-Cuts. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 34(7):1312–1328, jul 2012.

81

82 BIBLIOGRAPHY

[12] Xiaozhi Chen, Kaustav Kundu, Ziyu Zhang, Huimin Ma, Sanja Fidler, and Raquel
Urtasun. Monocular 3D Object Detection for Autonomous Driving. 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR), pages 2147–
2156, 2016.

[13] Xiaozhi Chen, Kaustav Kundu, Yukun Zhu, Huimin Ma, Sanja Fidler, and Raquel
Urtasun. 3D Object Proposals using Stereo Imagery for Accurate Object Class
Detection. Advances in Neural Information Processing Systems, pages 1–9, aug
2016.

[14] Xiaozhi Chen, Huimin Ma, Ji Wan, Bo Li, and Tian Xia. Multi-view 3D Object De-
tection Network for Autonomous Driving. In 2017 IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 6526–6534. IEEE, jul 2017.

[15] Chunhui Gu, Joseph J. Lim, Pablo Arbelaez, and Jitendra Malik. Recognition using
regions. In 2009 IEEE Conference on Computer Vision and Pattern Recognition,
number 2, pages 1030–1037. IEEE, jun 2009.

[16] José Correia. Unidade de Perceção Visual e de profundidade para o ATLASCAR2.
PhD thesis, University of Aveiro, 2017.

[17] George Dahl, Tara Sainath, and Geoffrey Hinton. Improving Deep Neural Netowrks
for LVCSR Using Recitified Linear Units and Dropout, Department of Computer
Science , University of Toronto. Acoustics, Speech and Signal Processing (ICASSP),
2013 IEEE International Conference on, pages 8609–8613, 2013.

[18] PDP Research Group David E. Rumelhart, James L. McClelland. Parallel Dis-
tributed Processing: Explorations in the Microstructure of Cognition: Foundations.
1986.

[19] Piotr Dollar, Zhuowen Tu, Pietro Perona, and Serge Belongie. Integral Channel
Features. Procedings of the British Machine Vision Conference 2009, pages 91.1–
91.11, 2009.

[20] Jeff Donahue, Yangqing Jia, Oriol Vinyals, Judy Hoffman, Ning Zhang, Eric Tzeng,
and Trevor Darrell. DeCAF: A Deep Convolutional Activation Feature for Generic
Visual Recognition. International Conference in Machine Learning (ICML), 32,
oct 2014.

[21] Lucía Diego Solana Dónal Scanlan. Deep Learning for Robust Road Object Detec-
tion. PhD thesis, 2017.

[22] Dumitru Erhan, Christian Szegedy, Alexander Toshev, and Dragomir Anguelov.
Scalable Object Detection Using Deep Neural Networks. In 2014 IEEE Conference
on Computer Vision and Pattern Recognition, pages 2155–2162, 2014.

[23] Dumitru Erhan, Christian Szegedy, Alexander Toshev, and Dragomir Anguelov.
Scalable Object Detection Using Deep Neural Networks. In 2014 IEEE Conference
on Computer Vision and Pattern Recognition, pages 2155–2162. IEEE, jun 2014.

Tomás Sampaio de Freitas Freixo Osório Dissertação de Mestrado

BIBLIOGRAPHY 83

[24] Mark Everingham, S. M Ali Eslami, Luc Van Gool, Christopher K I Williams,
John Winn, and Andrew Zisserman. The Pascal Visual Object Classes Challenge:
A Retrospective. International Journal of Computer Vision, 111(1):98–136, 2014.

[25] Mark Everingham, Luc Van Gool, Christopher K. I. Williams, John Winn, and An-
drew Zisserman. The Pascal Visual Object Classes (VOC) Challenge. International
Journal of Computer Vision, 88(2):303–338, jun 2010.

[26] Mark Everingham, Luc Van Gool, Christopher K.I. Williams, John Winn, and
Andrew Zisserman. The pascal visual object classes (VOC) challenge. International
Journal of Computer Vision, 88(2):303–338, 2010.

[27] P Felzenszwalb, David McAllester, Ross Girshick, and Deva Ramanan. Visual ob-
ject detection with deformable part models. Communications of the ACM, 56(9):97,
2013.

[28] Pedro F Felzenszwalb, Ross B Girshick, David Mcallester, and Deva Ramanan.
Object Detection with Discriminatively Trained Part Based Models. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence, 32(9):1–20, sep 2009.

[29] Roger Fletcher. Practical Methods of optimization. Wiley, 1987.

[30] James E. Fowler. The redundant discrete wavelet transform and additive noise.
IEEE Signal Processing Letters, 12(9):629–632, 2005.

[31] William T. Freeman and Edward H. Adelson. The Design and Use of Steerable Fil-
ters. IEEE Transactions on Pattern Analysis and Machine Intelligence, 13(9):891–
906, 1991.

[32] Salvador García, Julián Luengo, and Francisco Herrera. Data Preprocessing in Data
Mining, volume 72 of Intelligent Systems Reference Library. Springer International
Publishing, Cham, 2015.

[33] Andreas Geiger, Philip Lenz, and Raquel Urtasun. Are we ready for Autonomous
Driving? The \textsc{KITTI} Vision Benchmark Suite. Computer Vision and
Pattern Recognition, pages 3354–3361, 2012.

[34] Aurelien Geron. Hands-on machine learning with Scikit-Learn and TensorFlow :
concepts, tools, and techniques to build intelligent systems. O’Reilly Media, 2017.

[35] Ross Girshick. Fast R-CNN. In Proceedings of the IEEE International Conference
on Computer Vision, volume 2015 Inter, pages 1440–1448, 2015.

[36] Ross Girshick, Jeff Donahue, Trevor Darrell, and Jitendra Malik. Rich feature
hierarchies for accurate object detection and semantic segmentation. In Proceed-
ings of the IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, pages 580–587, 2014.

[37] Lee Gomes. Machine-Learning Maestro Michael Jordan on the Delusions of Big
Data and Other Huge Engineering Efforts. IEEE Spectrum, (October):1–11, 2014.

Tomás Sampaio de Freitas Freixo Osório Dissertação de Mestrado

84 BIBLIOGRAPHY

[38] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep Learning. MIT Press,
2016. http://www.deeplearningbook.org.

[39] Andreas Griewank and Andrea Walther. Evaluating Derivatives. Society for In-
dustrial and Applied Mathematics, jan 2008.

[40] Jun Han and Claudio Moraga. The influence of the sigmoid function parameters
on the speed of backpropagation learning. In José Mira and Francisco Sandoval,
editors, From Natural to Artificial Neural Computation, pages 195–201, Berlin,
Heidelberg, 1995. Springer Berlin Heidelberg.

[41] Bharath Hariharan, Pablo Arbeláez, Ross Girshick, and Jitendra Malik. Hyper-
columns for object segmentation and fine-grained localization. Proceedings of the
IEEE Computer Society Conference on Computer Vision and Pattern Recognition,
07-12-June:447–456, 2015.

[42] T Hastie, R Tibshirani, and J Friedmann. The elements of statistical learning.
Data mining, inference, and prediction. 2001.

[43] Kaiming He and Jian Sun. Convolutional neural networks at constrained time cost.
In 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 5353–5360, 2015.

[44] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Delving deep into
rectifiers: Surpassing human-level performance on imagenet classification. Proceed-
ings of the IEEE International Conference on Computer Vision, 2015 International
Conference on Computer Vision, ICCV 2015:1026–1034, 2015.

[45] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning
for Image Recognition. In 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), pages 770–778. IEEE, jun 2016.

[46] Geoffrey E Hinton, Nitish Srivastava, Alex Krizhevsky, Ilya Sutskever, and Rus-
lan R Salakhutdinov. Improving neural networks by preventing co-adaptation of
feature detectors. Arxiv, pages 1–18, jul 2012.

[47] Andrew G. Howard. Some Improvements on Deep Convolutional Neural Network
Based Image Classification. arXiv, pages 1–6, dec 2013.

[48] Andrew G. Howard, Menglong Zhu, Bo Chen, Dmitry Kalenichenko, Weijun Wang,
Tobias Weyand, Marco Andreetto, and Hartwig Adam. MobileNets: Efficient Con-
volutional Neural Networks for Mobile Vision Applications. apr 2017.

[49] Qichang Hu, Sakrapee Paisitkriangkrai, Chunhua Shen, Anton van den Hengel,
and Fatih Porikli. Fast Detection of Multiple Objects in Traffic Scenes With a
Common Detection Framework. IEEE Transactions on Intelligent Transportation
Systems, 17(4):1002–1014, apr 2016.

[50] Xiaowei Hu, Xuemiao Xu, Yongjie Xiao, Hao Chen, Shengfeng He, Jing Qin, and
Pheng-Ann Heng. SINet: A Scale-insensitive Convolutional Neural Network for
Fast Vehicle Detection. pages 1–10, apr 2018.

Tomás Sampaio de Freitas Freixo Osório Dissertação de Mestrado

http://www.deeplearningbook.org

BIBLIOGRAPHY 85

[51] Forrest N. Iandola, Khalid Ashraf, Matthew W. Moskewicz, and Kurt Keutzer.
FireCaffe: near-linear acceleration of deep neural network training on compute
clusters. IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
pages 1–13, oct 2016.

[52] Forrest N Iandola, Song Han, Matthew W Moskewicz, Khalid Ashraf, William J
Dally, and Kurt Keutzer. SqueezeNet: AlexNet-level accuracy with 50x fewer
parameters and <0.5MB model size. Iclr, 9349:1–13, 2016.

[53] SAE international. U.S. Department of Transportation’s New Policy on Automated
Vehicles Adopts SAE International’s Levels of Automation for Defining Driving
Automation in On-Road Motor Vehicles. SAE international, page 1, 2016.

[54] Sergey Ioffe and Christian Szegedy. Batch Normalization: Accelerating Deep Net-
work Training by Reducing Internal Covariate Shift. feb 2015.

[55] Nathalie Japkowicz. The Class Imbalance Problem: Significance and Strategies.
Proceedings of the 2000 International Conference on Artificial Intelligence, pages
111—-117, 2000.

[56] Jia Deng, Wei Dong, R. Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. ImageNet:
A large-scale hierarchical image database. 2009 IEEE Conference on Computer
Vision and Pattern Recognition, pages 248–255, 2009.

[57] S Jurecki. Driver’s reaction time under emergency braking a car - research in a
Driving simulator. Polish Maintenance Society, 14(4):295–301, 2012.

[58] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. ImageNet Classification
with Deep Convolutional Neural Networks. Advances In Neural Information Pro-
cessing Systems, pages 1–9, 2012.

[59] R. Kumari, Sheetanshu, M. K. Singh, R. Jha, and N.K. Singh. Anomaly detection
in network traffic using K-mean clustering. In 2016 3rd International Conference
on Recent Advances in Information Technology (RAIT), pages 387–393. IEEE, mar
2016.

[60] Y LeCun and Y Bengio. Convolutional networks for images, speech, and time
series. In The handbook of brain theory and neural networks, volume 3361, pages
255–258, 1995.

[61] Yann LeCun, Bernhard E Boser, John S Denker, Donnie Henderson, R E Howard,
Wayne E Hubbard, and Lawrence D Jackel. Handwritten Digit Recognition with
a Back-Propagation Network. In D S Touretzky, editor, Advances in Neural Infor-
mation Processing Systems 2, pages 396–404. Morgan-Kaufmann, 1990.

[62] Yann LeCun, Leon Bottou, Yoshua Bengio, and Patrick Haffner. Gradient Based
Learning Applied to Document Recognition. Proceedings of the IEEE, 86(11):2278–
2324, 1998.

[63] Bo Li, Tianfu Wu, and Song Chun Zhu. Integrating context and occlusion for
car detection by hierarchical and-or model. Lecture Notes in Computer Science

Tomás Sampaio de Freitas Freixo Osório Dissertação de Mestrado

86 BIBLIOGRAPHY

(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), 8694 LNCS(PART 6):652–667, 2014.

[64] Min Lin, Qiang Chen, and Shuicheng Yan. Network In Network. In International
Conference on Learning Representations, pages 1–10, 2014.

[65] Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ra-
manan, Piotr Dollár, and C Lawrence Zitnick. Microsoft COCO: Common Objects
in Context. In CoRR, volume abs/1405.0, pages 740–755. 2014.

[66] Wei Liu, Dragomir Anguelov, Dumitru Erhan, Christian Szegedy, Scott Reed,
Cheng Yang Fu, and Alexander C. Berg. SSD: Single shot multibox detector.
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), 9905 LNCS:21–37, 2016.

[67] Jiang-jing Lv, Xiao-hu Shao, Jia-shui Huang, Xiang-dong Zhou, and Xi Zhou. Data
augmentation for face recognition. Neurocomputing, 230(July 2016):184–196, 2017.

[68] Andrew L. Maas, Awni Y. Hannun, and Andrew Y. Ng. Rectifier Nonlinearities
Improve Neural Network Acoustic Models. Proceedings of the 30 th International
Conference on Machine Learning, 28:6, 2013.

[69] Spyros Makridakis. The forthcoming Artificial Intelligence (AI) revolution: Its
impact on society and firms. Futures, 90:46–60, jun 2017.

[70] Warren S. McCulloch and Walter Pitts. A logical calculus of the ideas immanent
in nervous activity. The Bulletin of Mathematical Biophysics, 5(4):115–133, 1943.

[71] Kishan Mehrotra, Chilukuri K Mohan, and Sanjay Ranka. Elements of artificial
neural networks. Complex adaptive systems, pages 4–7, 9, 24–27, 39, 1997.

[72] Dmytro Mishkin, Nikolay Sergievskiy, and Jiri Matas. Systematic evaluation of
convolution neural network advances on the Imagenet. Computer Vision and Image
Understanding, 161:11–19, aug 2017.

[73] Arsalan Mousavian, Dragomir Anguelov, Jana Košecká, and John Flynn. 3D
bounding box estimation using deep learning and geometry. Proceedings - 30th
IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2017, 2017-
January:5632–5640, 2017.

[74] Vinod Nair and Geoffrey E Hinton. Rectified Linear Units Improve Restricted
Boltzmann Machines. Proceedings of the 27th International Conference on Machine
Learning, (3):807–814, 2010.

[75] J Nocedal and Sj J J Wright. Numerical optimization, volume 43. 1999.

[76] Eshed Ohn-Bar and Mohan Manubhai Trivedi. Learning to Detect Vehicles by
Clustering Appearance Patterns. IEEE Transactions on Intelligent Transportation
Systems, 16(5):2511–2521, oct 2015.

[77] M Oliveira and V Santos. Automatic Detection of Cars in Real Roads using Haar-
like Features. 8th Portuguese Conference on Automatic Control, (April 2015):1–6,
2008.

Tomás Sampaio de Freitas Freixo Osório Dissertação de Mestrado

BIBLIOGRAPHY 87

[78] Miguel Riem Oliveira. Automatic Information and Safety Systems for Driving
Assistance. PhD thesis, University of Aveiro, 2013.

[79] Pariwat Ongsulee. Artificial Intelligence, Machine Learning and Deep Learning. In
Fifteenth International Conference on ICT and Knowledge Engineering, pages 1–6,
2017.

[80] Adam Paszke, Gregory Chanan, Zeming Lin, Sam Gross, Edward Yang, Luca
Antiga, and Zachary Devito. Automatic differentiation in PyTorch. Advances
in Neural Information Processing Systems 30, (Nips):1–4, 2017.

[81] Josh Patterson: and Adam Gibson;. Deep learning: A practictioners approach,
volume 521. 2015.

[82] Walter Murray Philip E. Gill and Margaret H. Wright. Practical Optimization.
Academic Press, 1981.

[83] Pedro O Pinheiro, Ronan Collobert, and Piotr Dollar. Learning to Segment Object
Candidates. pages 1–10, jun 2015.

[84] Kevin L. Priddy and Paul E. Keller. Artificial Neural Networks: An Introduction.
SPIE, aug 2005.

[85] Vignesh Ramanathan, Jonathan Huang, Sami Abu-El-Haija, Alexander Gorban,
Kevin Murphy, and Li Fei-Fei. Detecting Events and Key Actors in Multi-person
Videos. In 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 3043–3053. IEEE, jun 2016.

[86] Sebastian Raschka. Python Machine Learning. Number 1. Birmingham, 2015.

[87] Joseph Redmon, Santosh Divvala, Ross Girshick, and Ali Farhadi. You Only Look
Once: Unified, Real-Time Object Detection. In 2016 IEEE Conference on Com-
puter Vision and Pattern Recognition (CVPR), pages 779–788. IEEE, jun 2016.

[88] Joseph Redmon and Ali Farhadi. YOLO9000: Better, Faster, Stronger. In 2017
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), number
April, pages 6517–6525. IEEE, jul 2017.

[89] Shaoqing Ren, Kaiming He, Ross Girshick, and Jian Sun. Faster R-CNN: Towards
Real-Time Object Detection with Region Proposal Networks. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 39(6):1137–1149, 2017.

[90] Shaoqing Ren, Kaiming He, Ross Girshick, Xiangyu Zhang, and Jian Sun. Object
Detection Networks on Convolutional Feature Maps. pages 1–8, apr 2015.

[91] Willi Richert and Luis Pedro Coelho. Building Machine Learning Systems with
Python. 2013.

[92] Rasmus Rothe, Matthieu Guillaumin, and Luc Van Gool. Non-maximum Suppres-
sion for Object Detection by Passing Messages Between Windows. Asian Confer-
ence on Computer Vision (ACCV), pages 290–306, 2015.

Tomás Sampaio de Freitas Freixo Osório Dissertação de Mestrado

88 BIBLIOGRAPHY

[93] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean
Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexan-
der C. Berg, and Li Fei-Fei. ImageNet Large Scale Visual Recognition Challenge.
International Journal of Computer Vision, 115(3):211–252, dec 2015.

[94] Stuart Russel and Peter Norvig. Artificial Intelligence - A modern approach, vol-
ume 74. 1995.

[95] Gerard Salton and Michael J. McGill. Introduction to modern information retrieval.
McGraw-Hill Book Company, 1987.

[96] Dahlia Sam, Cyrilraj Velanganni, and T. Esther Evangelin. A vehicle control system
using a time synchronized Hybrid VANET to reduce road accidents caused by
human error. Vehicular Communications, 6:17–28, 2016.

[97] Sandhya Samarasinghe. Neural networks for applied sciences and engineering: from
fundamentals to complex pattern recognition. page 582, 2007.

[98] Arthur L Samuel. Some studies in machine learning using the game of checkers.
IBM Research Journal, 3(3):535–554, 1959.

[99] Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural
Networks, 61:85–117, jan 2015.

[100] Evan Shelhamer, Jonathan Long, and Trevor Darrell. Fully Convolutional Networks
for Semantic Segmentation. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 39(4):640–651, 2017.

[101] Abhinav Shrivastava, Rahul Sukthankar, Jitendra Malik, and Abhinav Gupta. Be-
yond Skip Connections: Top-Down Modulation for Object Detection. dec 2016.

[102] P.Y. Simard, D. Steinkraus, and J.C. Platt. Best practices for convolutional neural
networks applied to visual document analysis. In Seventh International Conference
on Document Analysis and Recognition, 2003. Proceedings., volume 1, pages 958–
963. IEEE Comput. Soc, 2003.

[103] Bert Speelpenning. Compiling fast partial derivatives of functions given by algo-
rithms. Technical report, Historical Energy Database (United States), jan 1980.

[104] Nitish Srivastava, Geoffrey Hinton, Alex Krizhevsky, Ilya Sutskever, and Ruslan
Salakhutdinov. Dropout: A Simple Way to Prevent Neural Networks from Over-
fitting. Journal of Machine Learning Research, 15:1929–1958, 2014.

[105] Russell Stewart, Mykhaylo Andriluka, and Andrew Y. Ng. End-to-End People
Detection in Crowded Scenes. In 2016 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pages 2325–2333. IEEE, jun 2016.

[106] Kah-kay Sung. Center for Biological and Computational Learning and Example
Selection for Object and Pattern Detection. PhD thesis, Massachusetts Institute of
Technology, 1996.

Tomás Sampaio de Freitas Freixo Osório Dissertação de Mestrado

BIBLIOGRAPHY 89

[107] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alex Alemi. Inception-v4,
Inception-ResNet and the Impact of Residual Connections on Learning. 2016.

[108] Christian Szegedy, Sergey Ioffe, Vincent Vanhoucke, and Alex Alemi. Inception-v4,
Inception-ResNet and the Impact of Residual Connections on Learning. feb 2016.

[109] Christian Szegedy, Scott Reed, Dumitru Erhan, Dragomir Anguelov, and Sergey
Ioffe. Scalable, High-Quality Object Detection. 2014.

[110] Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jonathon Shlens, and Zbig-
niew Wojna. Rethinking the Inception Architecture for Computer Vision. In 2016
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pages
2818–2826. IEEE, jun 2016.

[111] Pang-Ning Tan, Michael Steinbach, and Vipin Kumar. Introduction to data mining.
2006.

[112] Tami Toroyan. Global status report on road safety. World Health Orgainisation,
page 318, 2015.

[113] J R R Uijlings, K. E. A. van de Sande, T Gevers, and A W M Smeulders. Se-
lective Search for Object Recognition. International Journal of Computer Vision,
104(2):154–171, sep 2013.

[114] P. Viola and M. Jones. Rapid object detection using a boosted cascade of simple
features. Proceedings of the 2001 IEEE Computer Society Conference on Computer
Vision and Pattern Recognition. CVPR 2001, 1:I–511–I–518, 2001.

[115] Min Wang, Baoyuan Liu, and Hassan Foroosh. Look-Up Table Unit Activation
Function for Deep Convolutional Neural Networks. In 2018 IEEE Winter Confer-
ence on Applications of Computer Vision (WACV), pages 1225–1233. IEEE, mar
2018.

[116] Bichen Wu, Forrest Iandola, Peter H Jin, and Kurt Keutzer. SqueezeDet: Uni-
fied, Small, Low Power Fully Convolutional Neural Networks for Real-Time Ob-
ject Detection for Autonomous Driving. In IEEE Computer Society Conference
on Computer Vision and Pattern Recognition Workshops, volume 2017-July, pages
446–454, dec 2017.

[117] Ren Wu, Shengen Yan, Yi Shan, Qingqing Dang, and Gang Sun. Deep Image:
Scaling up Image Recognition. 90(6):795–803, jan 2015.

[118] Yu Xiang, Wongun Choi, Yuanqing Lin, and Silvio Savarese. Data-driven 3D Voxel
Patterns for object category recognition. Proceedings of the IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, 07-12-June-2015:1903–
1911, 2015.

[119] Yu Xiang, Wongun Choi, Yuanqing Lin, and Silvio Savarese. Subcategory-Aware
convolutional neural networks for object proposals & detection. Proceedings - 2017
IEEE Winter Conference on Applications of Computer Vision, WACV 2017, pages
924–933, 2017.

Tomás Sampaio de Freitas Freixo Osório Dissertação de Mestrado

90 BIBLIOGRAPHY

[120] Fan Yang, Wongun Choi, and Yuanqing Lin. Exploit All the Layers: Fast and Accu-
rate CNN Object Detector with Scale Dependent Pooling and Cascaded Rejection
Classifiers. 2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), pages 2129–2137, 2016.

[121] Junfeng Yao, Yao Yu, and Xiaoling Xue. Sentiment prediction in scene images via
convolutional neural networks. In Proceedings - 2016 31st Youth Academic Annual
Conference of Chinese Association of Automation, YAC 2016, pages 196–200, 2017.

[122] Dong Yi, Zhen Lei, Shengcai Liao, and Stan Z. Li. Learning Face Representation
from Scratch. nov 2014.

[123] Jason Yosinski, Jeff Clune, Yoshua Bengio, and Hod Lipson. How transferable are
features in deep neural networks? In NIPS’14 Proceedings of the 27th International
Conference on Neural Information Processing Systems, volume 2, pages 3320–3328,
nov 2014.

[124] Roman Zakharenko. Self-driving cars will change cities. Regional Science and
Urban Economics, 61(September):26–37, 2016.

[125] Matthew D. Zeiler and Rob Fergus. Visualizing and Understanding Convolutional
Networks. In Computer Vision - ECCV 2014, volume 8689, pages 818–833. 2014.

[126] M.D. Zeiler, M Ranzato, R Monga, M Mao, K Yang, Q.V. Le, P Nguyen, A Senior,
V Vanhoucke, J Dean, and G.E. Hinton. On rectified linear units for speech pro-
cessing. In 2013 IEEE International Conference on Acoustics, Speech and Signal
Processing, pages 3517–3521. IEEE, may 2013.

[127] Wang Zhiqiang and Liu Jun. A review of object detection based on convolutional
neural network. In 2017 36th Chinese Control Conference (CCC), pages 11104–
11109. IEEE, jul 2017.

[128] Xiaolu Zhou, Chen Xu, and Brandon Kimmons. Detecting tourism destinations
using scalable geospatial analysis based on cloud computing platform. Computers,
Environment and Urban Systems, 54:144–153, 2015.

Tomás Sampaio de Freitas Freixo Osório Dissertação de Mestrado

Appendix A

Appendix

91

92 A.Appendix

Approach Reference
Name

Vanilla Version #1.1
No Augmentation Data #1.2
Batch Normalization #1.3

Focal Loss #1.4
Matching Strategy #1.5
No transfer Learning #1.6

Frozen layers #1.7
Data Standardization #1.8

k -means Cluster getting the anchors #1.9
λ in function of IoU #1.10

Lower Input #1.11
SSD: MobileNet v1 #2.1
SSD: Inception v2 #2.2

Faster R-CNN: Inception v2 #3.1
Faster R-CNN: ResNet 50 #3.2
Faster R-CNN: ResNet 101 #3.3

Faster R-CNN: ResNet 101 KITTI #3.4
Faster R-CNN: Inception ResNet v2 #4

Table A.1: Models version reference.

Ref AP mR Localization Background Repetition Optimal
Error Error Error Confidence

#1.1 43.4% 43.8% 41.3% 15.3% 0.0% 74%
#1.2 0.0% 0.0% 0.0% 0.0% 0.0% -
#1.3 7.6% 7.6% 51.6% 40.8% 0.0% 77%
#1.4 40.8% 41.5% 44.3% 14.9% 0.0% 73%
#1.5 46.2% 46.8% 37.8% 16.0% 0.0% 73%
#1.6 30.5% 30.5% 48.8% 20.7% 0.0% 73%
#1.7 29.1% 28.6% 51.4% 19.5% 0.0% 73%
#1.8 31.2% 31.7% 52.3% 16.5% 0.0% 73%
#1.9 27.8% 27.7% 53.2% 19.0% 0.0% 73%
#1.10 27.9% 27.6% 53.8% 18.4% 0.0% 70%
#1.11 15.8% 15.8% 61.1% 23.1% 0.0% 62%
#2.1 49.6% 49.7% 28.9% 21.5% 0.0% 22%
#2.2 59.6% 59.7% 19.2% 21.2% 0.0% 39%
#3.1 73.3% 73.5% 6.1% 20.6% 0.0% 93%
#3.2 74.6% 74.7% 5.2% 20.2% 0.0% 95%
#3.3 73.3% 75.0% 5.1% 21.7% 0.0% 99%
#3.4 73.7% 76.7% 5.4% 20.9% 0.0% 99%
#4 77.1% 77.4% 3.9% 18.9% 0.0% 98%

Table A.2: Results obtained from detecting car in the optimal point, using KITTIs
evaluation method.

Tomás Sampaio de Freitas Freixo Osório Dissertação de Mestrado

A.Appendix 93

Ref AP AR Localization Background Repetition Optimal
Error Error Error Confidence

#1.1 69.5% 70.1% 13.5% 15.3% 1.7% 74%
#1.2 0.0% 0.0% 0.0% 0.0% 0.0% -
#1.3 24.3% 24.4% 32.8% 40.8% 2.1% 77%
#1.4 68.9% 70.0% 14.6% 14.9% 1.6% 73%
#1.5 70.6% 71.5% 12.3% 16.0% 1.1% 73%
#1.6 58.8% 58.8% 18.1% 20.7% 2.4% 73%
#1.7 58.2% 57.1% 19.9% 19.5% 2.4% 73%
#1.8 60.1% 61.1% 20.6% 16.5% 2.8% 73%
#1.9 57.7% 57.5% 21.1% 19.0% 2.3% 73%
#1.10 57.0% 56.4% 22.8% 18.4% 1.9% 70%
#1.11 39.5% 39.5% 36.0% 23.1% 1.4% 62%
#2.1 67.6% 67.8% 10.9% 21.5% 0.0% 22%
#2.2 70.9% 71.0% 7.7% 21.2% 0.1% 39%
#3.1 75.5% 75.7% 3.8% 20.6% 0.0% 93%
#3.2 76.2% 76.3% 3.6% 20.2% 0.0% 95%
#3.3 74.8% 76.5% 3.5% 21.7% 0.0% 99%
#3.4 74.9% 78.0% 4.2% 20.9% 0.0% 99%
#4 77.8% 78.1% 3.3% 18.9% 0.0% 98%

Table A.3: Results obtained from detecting car in the optimal point, using PASCALs
evaluation method.

Ref AP AR Localization Background Repetition Optimal
Error Error Error Confidence

#1.1 37.1% 37.6% 33.8% 27.8% 1.2% 68%
#1.2 0.0% 0.0% 0.0% 0.0% 0.0% -
#1.3 12.7% 12.5% 22.6% 64.1% 0.6% 77%
#1.4 38.6% 38.6% 30.5% 30.1% 0.8% 65%
#1.5 40.5% 40.7% 29.3% 29.5% 0.6% 70%
#1.6 31.1% 31.1% 32.8% 34.2% 1.9% 73%
#1.7 35.6% 35.1% 35.4% 25.2% 3.8% 68%
#1.8 35.3% 34.4% 33.5% 28.0% 3.2% 69%
#1.9 34.6% 33.8% 35.3% 26.5% 3.6% 66%
#1.10 31.4% 31.3% 39.4% 26.0% 3.1% 64%
#1.11 17.0% 16.5% 44.8% 37.8% 0.4% 47%
#2.1 40.7% 40.7% 23.2% 35.7% 0.4% 4%
#2.2 45.5% 47.0% 21.7% 32.2% 0.6% 3%
#3.1 68.7% 68.7% 8.8% 22.5% 0.0% 12%
#3.2 70.8% 70.8% 8.6% 20.3% 0.4% 11%
#3.3 72.5% 72.2% 11.3% 16.1% 0.0% 10%
#3.4 84.7% 72.9% 3.4% 11.9% 0.0% 34%
#4 73.6% 74.3% 6.4% 19.8% 0.2% 2%

Table A.4: Results obtained from detecting pedestrians in the optimal point.

Tomás Sampaio de Freitas Freixo Osório Dissertação de Mestrado

94 A.Appendix

Ref mAP mAR Localization Background Repetition Optimal
Error Error Error Confidence

#1.1 40.3% 39.7% 36.3% 23.0% 0.5% 72%
#1.2 0.0% 0.0% 0.0% 0.0% 0.0% -
#1.3 10.1% 10.1% 37.1% 52.5% 0.3% 77%
#1.4 39.8% 39.5% 37.1% 22.7% 0.4% 68%
#1.5 43.2% 43.9% 33.5% 23.1% 0.2% 71%
#1.6 30.8% 30.8% 40.8% 27.5% 0.9% 73%
#1.7 31.1% 32.1% 43.2% 23.7% 2.0% 70%
#1.8 33.4% 33.3% 42.5% 22.4% 1.7% 71%
#1.9 30.4% 30.2% 43.3% 24.4% 1.9% 69%
#1.10 29.7% 29.3% 45.9% 23.0% 1.4% 67%
#1.11 15.2% 15.6% 52.4% 32.1% 0.3% 53%
#2.1 45.2% 45.0% 26.5% 28.1% 0.2% 6%
#2.2 54.0% 53.8% 20.9% 24.8% 0.2% 6%
#3.1 71.2% 71.2% 7.3% 21.5% 0.0% 30%
#3.2 72.2% 72.1% 7.2% 20.5% 0.1% 23%
#3.3 73.4% 73.5% 7.7% 19.0% 0.0% 42%
#3.4 76.6% 76.5% 5.0% 18.4% 0.0% 11%

Table A.5: Results obtained from detecting car and pedestrians in the optimal point,
using KITTIs evaluation method.

Ref mAP mAR Localization Background Repetition Optimal
Error Error Error Confidence

#1.1 52.8% 53.9% 22.9% 23.0% 1.4% 72%
#1.2 0.0% 0.0% 0.0% 0.0% 0.0% -
#1.3 18.5% 18.5% 27.7% 52.5% 1.4% 77%
#1.4 54.1% 54.5% 23.1% 21.4% 1.3% 69%
#1.5 57.4% 55.7% 20.5% 21.3% 0.8% 72%
#1.6 44.9% 45.0% 25.5% 27.5% 2.1% 73%
#1.7 46.3% 47.5% 28.1% 22.3% 3.3% 71%
#1.8 49.4% 48.3% 26.9% 20.9% 2.8% 72%
#1.9 45.2% 46.7% 29.2% 22.4% 3.2% 70%
#1.10 44.5% 44.5% 31.7% 21.3% 2.5% 68%
#1.11 27.0% 27.6% 44.5% 27.5% 1.0% 57%
#2.1 54.7% 54.4% 17.6% 27.4% 0.3% 7%
#2.2 59.5% 59.9% 15.3% 24.8% 0.4% 6%
#3.1 73.0% 72.9% 5.8% 21.2% 0.0% 31%
#3.2 73.1% 73.2% 6.2% 20.5% 0.1% 23%
#3.3 74.5% 74.4% 6.6% 19.0% 0.0% 43%
#3.4 77.1% 77.0% 4.5% 18.4% 0.0% 11%

Table A.6: Results obtained from detecting car and pedestrians in the optimal point,
using PASCALs evaluation method.

Tomás Sampaio de Freitas Freixo Osório Dissertação de Mestrado

	Acronyms
	Introduction
	Vehicle Automation
	Artificial Intelligence
	Machine learning
	Deep Learning

	ATLAS Project

	Background
	Artificial Neural Networks
	Feed-Forward Neural Networks
	Activations
	Loss Function
	Optimization
	Convolution Neural Networks
	Transfer Learning
	Regularize Layers
	Early Stopping

	General Concepts
	Overfitting
	Intersection over Union
	Non-Maximum Suppressor
	k-means Clustering

	State-of-the-Art in Object Detection
	Classic Object Detectors
	Rapid Object Detection by Viola and Jones

	Two-Stage Detectors
	Regions with Convolutional Neural Networks features
	Faster R-CNN

	One-Stage Detectors
	You Only Look Once
	YOLO 9000
	SSD: Single Shot MultiBox Detector
	Focal Loss for Dense Object Detection
	SqueezeDet

	Summary

	Model Characterization
	Architecture
	SqueezeNet
	Vanilla SqueezeDet Architecture

	Objective Function
	Vanilla Cost Function
	Inference

	Data Handling
	KITTI Dataset
	Evaluation Methodology
	Dataset Proprieties

	Data Preparation
	Data Augmentation

	Model Fitting
	Framework
	Machine
	Programming Language
	Library
	Programming the loss function
	Training Hyper-Parameters

	Experiments
	Vanilla Version
	No Augmentation Data
	Batch Normalization
	Focal Loss
	Matching Strategy
	No transfer Learning
	Frozen layers
	Data Standardization
	k-means Cluster getting the anchors
	 in function of IoU
	Lower Input

	Other Trained Models
	SSD: MobileNet v1
	SSD: Inception v2
	Faster R-CNN: Inception v2
	Faster R-CNN: ResNet
	Faster R-CNN: Inception ResNet v2

	Results and Discussion
	Performance Testing
	Detecting Cars
	Detecting Pedestrians
	Detecting Objects
	System Performance
	Overall Performance

	Predictions Visualization

	Conclusions
	Theory
	Practice
	Results
	Future Work

	Appendix

